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Abstract

Most recent approaches for the zero-shot cross-modal image
retrieval map images from different modalities into a uniform
feature space to exploit their relevance by using a pre-trained
model. Based on the observation that manifolds of zero-shot
images are usually deformed and incomplete, we argue that
the manifolds of unseen classes are inevitably distorted dur-
ing the training of a two-stream model that simply maps im-
ages from different modalities into a uniform space. This is-
sue directly leads to poor cross-modal retrieval performance.
We propose a bi-directional random walk scheme to mining
more reliable relationships between images by traversing het-
erogeneous manifolds in the feature space of each modal-
ity. Our proposed method benefits from intra-modal distri-
butions to alleviate the interference caused by noisy sim-
ilarities in the cross-modal feature space. As a result, we
achieved great improvement in the performance of the ther-
mal v.s. visible image retrieval task. The code of this paper:
https://github.com/fyang93/cross-modal-retrieval

1 Introduction

The ongoing prosperity of deep learning lowers the barrier
to produce reliable image representations. Given robust im-
age representations, previous studies have made tremendous
progress on the task of image retrieval. Although most im-
age retrieval tasks are enclosed in a single modality, e.g. all
images are from the RGB domain, a rising trend is to break
through this limitation so that images can be queried across
different modalities. However, a huge performance gap can
still be observed between intra-modal and cross-modal im-
age retrieval tasks (Ye et al. 2018b; Wang et al. 2019;
2018). We specifically focus on the zero-shot cross-modal
image retrieval where the testing images are sampled from
classes that never appeared in the training set.

For a single-modal task, it is general to fine-tune a model
pre-trained on ImageNet (Deng et al. 2009) and extract
image features from its intermediate layers. While for a
cross-modal task, the images come from two subsets cor-
responding to two different modalities. In this regard, the
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cross-modal model usually has two streams where each of
them handles images input from each modality. Those two
streams join together at the tail of the model, mapping
image features from two modalities into a shared feature
space, with a classifier attached afterward (Ye et al. 2018a;
2018b). Although such a model memorized how to map
training images of the same class into a concentrated clus-
ter whichever modalities they are from, we argue that align-
ing classes in the training set across different modalities in-
evitably distorts the remaining manifolds consists of samples
of unseen classes.

Fig. 1 visualizes this phenomenon. Fig. 1a shows the fea-
ture distribution of digits 7 to 9 in the MNIST dataset where
features are extracted by a single-modal model which is
trained by using other digits in the MNIST dataset only.
While Fig. 1b shows the feature distribution for the SVHN
dataset. Although imperfect, it can be observed that most
image features are concentrated around their class centers.
The cross-modal model, instead, is trained with images from
both modalities (i.e. modalities of MNIST and SVHN) and
results in a cluttered distribution in its uniform feature space
(Figs. lc and 1d). Particularly, it can be observed that the
manifold of digit 9 in Fig. 1d is isolated into several blobs.
Needless to say, this issue directly results in poor cross-
modal retrieval performance.

Some may ascribe such a phenomenon to the over-fitting,
but we have another plausible interpretation. Suppose that
we have images of lemon, lime, and mango. In the color do-
main, lemon is more similar to mango than lime in terms of
color. While in the monochrome domain, lemon is closer to
lime than mango in terms of shape. These domain-specific
relationships are helpful in forming the feature distribution
in every single domain. However, when we train a cross-
modal model by using all images of lemon and lime, the con-
flicts among those relationships (lemon and lime are close in
shape but far in color) ask both domains to adapt its feature
space for each other. As a result, the feature space of each
domain is distorted and the feature manifold of the unseen
class mango is very likely to be torn into parts.

In this work, we propose to leverage the domain-specific
information by mining on manifolds in different single-
modal feature spaces. Our idea is straightforward. Now that
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Figure 1: Visualization of feature distributions [t-SNE (Maaten and Hinton 2008)] for zero-shot digits 7 (¢ A), 8(© A) and 9(© A)
in single-modal spaces (a)(b) and cross-modal spaces (c)(d), while other digits (0~6) are used for training. Samples from the
query set and the gallery set are represented by triangles and circles respectively. The subcaptions are formatted by {dataset
whose testing set (7~9) is used as query} — {dataset whose training set (7~9) is used as gallery}.

the manifolds of zero-shot images in the cross-modal fea-
ture space are distorted and possibly incomplete, while the
single-modal spaces have complete yet well-shaped man-
ifolds. We take the nearest neighbors of a query in the
cross-modal feature space as the initial state, then apply
random walk on the corresponding single-modal feature
space. In other words, we use the cross-modal feature space
as a bridge to connect heterogeneous manifolds of differ-
ent modalities. Our main contributions are 1) we show the
proofs that mapping images from different modalities into a
uniform feature space distorts manifolds of unseen classes;
2) we propose a novel random walk scheme which bene-
fits from the reliable feature distributions created by single-
modal models; 3) we validate our method on visible v.s. ther-
mal datasets and achieves significant performance improve-
ment.

The rest of the paper is structured as follows. After in-
troducing the related work, we formulate our proposed bi-
directional random walk scheme in Section 3. Section 4 de-
scribes our experimental settings and Section 5 demonstrates
the results, showing that our proposed method significantly
improves retrieval performance before concluding.

2 Related Works

Existing approaches for cross-modal image retrieval mainly
focused on the representation learning to coalesce feature
spaces in different modalities, such as visible and infrared
modalities. (Wu et al. 2017) introduced a deep zero-padding
framework where images from different modalities share a
common convolutional network during the feature genera-
tion. However, instead of training a common network, it
is natural to benefit from the intrinsic context inside each
modality by using a two-stream model. The literature is
rich in the applications of the two-stream model with var-
ious training strategies. Some early researches trained the
model to generate hashing code as features (Cao et al. 2016;
2017). Different loss functions designed for metric learn-
ing, e.g. contrastive loss, ranking loss, and sphere loss
were employed in recent works (Ye et al. 2018a; 2018b;
Hao et al. 2019). (Dai et al. 2018) adopted a generative ad-
versarial training strategy which was first used in the text v.s.

image retrieval (Wang et al. 2017). The key idea is to update
image features to fool the discriminator so that it cannot dis-
tinguish the source modality of the feature, while the dis-
criminator is trained to categorize features into their source
modalities at the same time. Another recent trend is to apply
data augmentation by converting images to other modalities
with generative adversarial networks (Wang et al. 2019).

Besides the representation learning performed by the
above methods, it is equivalently important to choose a
proper search algorithm. Based on the k-NN search, aver-
age query expansion is a widely used technique to boost
performance (Chum et al. 2007). Other than that, a better
image retrieval performance can also be achieved through
mining on manifolds. (Zhou et al. 2004) first proposed to
conduct a random walk on an undirected graph where each
image is connected to its locally nearest neighbors. Starting
from an initial state, such a random walk process spreads
out the weight on the query node iteratively until it reaches
a stable state. The weights on other nodes are then regarded
as the similarity scores to the query. Since the graph repre-
sents local relationships between images, it allows travers-
ing over manifolds regardless of their shapes and ranges.
(Donoser and Bischof 2013) used the term diffusion to de-
scribe this technique. Recent works focused on improv-
ing diffusion’s speed and performance. (Bai et al. 2017a;
2017b) proposed the regularized ensemble diffusion to sup-
press the noisy similarities between false-positive image
pairs in the graph. (Iscen et al. 2018) extended diffusion to
regional features and achieved better retrieval performance
than using global features only. (Yang et al. 2019) decoupled
diffusion into online and offline processes, making it effi-
cient during the search time. In addition, they achieved bet-
ter performance by conducting late truncation in large scale
datasets.

3 Proposed Method

We propose a bi-directional random walk scheme for
cross-modal image retrieval. Such a random walk ap-
proach was also called diffusion in single-modal image
retrieval (Donoser and Bischof 2013; Iscen et al. 2017,
Yang et al. 2019). We avoid using the term diffusion since
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Figure 2: Overview of our proposed bi-directional random walk scheme. The black arrows show the pipeline to obtain the graph
represented by an adjacency matrix, while the blue and green paths describe the random walk processes in both directions.

our problem setting is not just diffusing similarity scores in
the gallery for the given query but in both directions.

3.1 Problem Definition

For cross-modal image retrieval, we have two subsets con-
taining images of two different modalities. We name the two
subsets X = {xi,...,Xy} and ¥ = {y1,...,yn}. For
each subset, we train a single-modal model to obtain feature
representations. We denote f, : X — R and fy: Y R4
as feature extraction operations for each subset using the
corresponding models. We also train a cross-modal model,
serving as a bridge to relate two subsets, to project all images
to feature vectors in a uniform space where the inputs from
two modalities are mapped into. This operation is denoted
by fu 1 {X,V} = RY.

Now that the cross-modal image retrieval problem is de-
picted as ranking the images in ) by their similarities to
the given query image x; € X, or ranking X by the given
query y; € Y. A naive solution is to apply k-NN search
in {£u(x1), ., fu(%0)} G fuly1)s- - fulyn)}) with the
query fu(yi) (fu(x;)). However, as we mentioned in Sec-
tion 1, the manifolds of unseen classes in the uniform fea-
ture space are very likely to be deformed during the training
of a two-stream model. In severe cases such as searching for
digit 7 in SVHN by the given queries in MNIST (see Fig. 1d,
blue), k-NN search can find either a small portion of the
positive samples or negative ones. To alleviate this issue,
we propose to construct graphs for heterogeneous manifolds
in the single-modal spaces and apply a random walk across
them.

3.2 Graph Construction

We first consider a large graph representing affinities be-
tween all images, then show how to split it up. The entire
dataset {X', )} contains m + n images, so we allocate a
R(m+n)x(m+n) adjacency matrix to record their similarity

scores to each other:

A,
A y} , M

Ayy

where A, € R™*™, Ayy € R™*", Ay, € R™™, and
Ay, € RV

To benefit from the domain-specific information, we com-
pute A, and A, by using their features from two isolated
single-modal models. This process is shown in Fig. 2 by
black arrows. Following (Iscen et al. 2017), we set element
a;; (1 # j)in Agy to (fu(xi), fo(x;)) only if f,(x;) and
fx(x;) are in each other’s k nearest neighbors, and 0 other-
wise. We omit the description to obtain A, since it is alike.

Notice that A, and A, are used to save the similarity
scores between images from different modalities. Therefore,
it requires a measurement in a shared feature space. As a
result, element a;; (i # 7) in Ay, is (fu(x;), fu(y;)) only
if fu(x;) and f,(y;) are in each other’s k nearest neighbors,
and 0 otherwise. A, is the transposition of A,,.

Since we only concern about the affinities between each
image and its locally nearest neighbors, the adjacency matrix
is sparse and costs a limited amount of memory.

3.3 Random Walk

Now we have constructed the graph represented by an adja-
cency matrix. We still need to convert it to a transition ma-
trix for the next random walk. This step is called normaliza-
tion. Since the adjacency matrix consists of blocks contain-
ing similarity scores measured in different spaces, here we
break down the adjacency matrix and apply normalization
individually to each block. Specifically, A., and A, are
symmetrically normalized by

Sio =D, /?A,, D2 S, =D, ?A,D /2 (2)

vy

where elements on the diagonal of D, and D,, are the
row-wise sums of A,, and A, respectively, while the off-
diagonal elements are all zeros. On the other hand, A, and
A, are {1 normalized to S, and S, by row. Similar to



the structure of the adjacency matrix, the transition matrix is

defined as
S. S
[Sym Syy] )

Once the transition matrix is prepared, we can start the
random walk from any wanted initial states. The state vector

at t-th step of random walk is denoted by f* = [ft ' f tT]

where f! € R™ and £, ! ¢ R™. On each random walk stage,
we concern about the retrleval result of one query image.
Therefore, we set the initial state f° as a one-hot vector,
where the position of 1 implies the index of the query. An-
other parameter o € (0, 1) is introduced to ensure that the
random walk can finally converge to a stable state. Then
each iteration step of random walk is defined as

£l = aSf! 4 (1 — a)f°. 4)
After assigning Eq. (3) into Eq. (4), we obtain
fitl = a8S,.f! + aS,,f! , (1= )fY

5
£ = aSy.fL + aSy,fl + (1 - a)f). ®

When the query image lies in the subset X ())), we only
concern the similarity scores between the query and each
image in subset Y (X). It means that we only need to com-
pute either £2° or fyOo rather than both of them. For instance,
during the computation of £°, S, and S, are regarded as
zero matrices so that f! is always fixed. Similarly, fé is fixed
during the computation of f2°. As a result, we obtain the
closed-form solution for £7° and £°:

£ =a(l—-a)I- osz)flsgcyfz?7

o0 _ (6)
£° =a(l —a)(I—aSy,) 'S, £

For brevity, the constant scale (1 — «) is ignored and I —
aS(.) is denoted by L.y by convention. Eventually, Eq. (6)
is simplified to

£° o L1S,, 0 f°°o<£18 of2, @)

zyty>

where f¥ and f;) are one-hot vectors representing the index

of query image in subset X and ).

3.4 Graph Truncation

Truncation is a necessary technique in applying random
walk to large datasets. The key idea is to search in a proper
range of the query’s neighborhood rather than the entire
gallery. Recently, (Yang et al. 2019) showed that trunca-
tion can not only enhance efficiency but also improves re-
trieval performance by ruling out potential false-positive
samples. There are two main types of truncation (Iscen et
al. 2018; Yang et al. 2019). Fig. 3 demonstrates the dif-
ference between them. The query-guided truncation con-
ducts a k-NN search and uses found samples as the trun-
cated gallery. This requires the query and the gallery to be
in the same space. While the gallery-guided truncation de-
cides the search range by combining several neighborhood
ranges around the query’s nearest neighbors. In other words,
a few nearest neighbors of the query can help to apply trun-
cation in another feature space (see Fig. 3b). In our scenario,

shared space

(a) Query-guided truncation

shared space gallery space

(b) Gallery-guided truncation

Figure 3: Comparison between the query-guided truncation
and the gallery-guided truncation, where the query is in dark
blue while the gallery samples are in light blue. The pink
area represents the final range to search in.

it is preferable to apply truncation in the single-modal space
of the gallery side instead of the noisy cross-modal space.
Therefore, our solution is to look for a few nearest neigh-
bors of the query in the cross-modal space and then apply
the gallery-guided truncation in the single-modal space.

From the perspective of math, the truncation can be either
achieved by slicing the matrices to only reserve concerned
rows and columns or simply replacing the similarities out of
interest to zeros. For simplicity, we do not revise the nota-
tions of matrices to refer to the truncated ones. Unless other-
wise stated, Laplacian matrices (£, and L) are truncated
by default throughout this paper.

3.5 Bi-directional Retrieval

As afore-mentioned, we aim at the bi-directional retrieval
instead of the unidirectional retrieval from the query side to
the gallery side. That means we view both subsets & and
Y equivalently, and each of them can be either the query or
the gallery. In this regard, we exploit heterogeneous mani-
folds of both modalities by conducting random walk on the
constructed graphs.

Eq. (7) shows the convergence of the random walk pro-
cess. Scores in the final state of the random walk are impor-
tant cues for ranking images by their similarities to the query
on manifolds. For instance, starting from the ¢-th query im-
age in the subset ), the final state vector £2° is the ¢-th col-
umn vector of the matrix £ S:ry whose elements are also
viewed as scores for the subsequent ranking. In other words,
L2Szy € R™™ and L,/S,, € R"™ ™ consists of the
s1m11ar1ty scores of each query image in ) and X respec-



tively. We define the result of our bi-directional retrieval as
B = ALy Say + (1= N)(Ly,Sys) ®)

where A is weight for balancing the scores obtained from
both directions. Note that we do not choose to normalize
similarity scores. In the later experiment (see Fig. 5), we
show that normalizing similarity scores for each query has
no positive effect on the performance.

4 Datasets and Setup
4.1 Datasets

We first introduce two well-known digit classification
datasets briefly, then describe two person re-identification
datasets with both visible and thermal (infrared) images.

MNIST and SVHN are both digit datasets. The MNIST
dataset (LeCun et al. 1998) consists of handwitten digit im-
ages from 0 to 9 of size 28 x 28. Among them, 60,000 binary
images are in the training set and 10,000 in the testing set.
The SVHN (Street View House Numbers) dataset (Netzer et
al. 2011), as implied by its name, consists of RGB images of
digits. It contains 73,257 training and 26,032 testing images
of size 32 x 32.

RegDB contains images of 412 persons. 10 visible images
and 10 thermal images were captured for each person by a
dual-camera system (Nguyen et al. 2017). We take the eval-
uation protocol in (Ye et al. 2018b) where the entire dataset
was divided into a training set and a testing set. On the test-
ing stage, query images and gallery images are from dif-
ferent modalities for evaluating the cross-modal image re-
trieval. Since the dataset was randomly split, it is recom-
mended to run the whole procedure for 10 trials to obtain
statistically stable results.

SYSU-MMO1 consists of visible and thermal images of
491 identities captured by 6 cameras including 4 RGB cam-
eras and 2 infrared cameras (Wu et al. 2017). Those RGB
cameras and IR cameras work in light and dark scenarios re-
spectively. The training set contains 22,258 visible images
and 11,909 thermal images of 395 persons. The testing set
contains 3,803 thermal query images where 96 persons ap-
peared, and 301 visible images randomly sampled for each
person as the gallery set. Following the evaluation protocol
in (Ye et al. 2018b; Wang et al. 2019), we adopt the most
challenging single-shot all-search mode evaluation proto-
col. However, it should be clarified that we adopt the en-
tire gallery set during the graph construction, and randomly
select 301 entries for each person in the result of our bi-
directional retrieval for the subsequent evaluation.

4.2 Model Fine-tuning

Our main concern is to exploit the manifolds in feature dis-
tributions rather than features themselves. So we merely
adopt two baseline models (see Fig. 4) for feature extrac-
tion. Fig. 4a shows the model for images in a single modal-
ity, while Fig. 4b shows the cross-modal model taking im-
ages from two different modalities as input. ResNet18 serves
as the backbone CNN for MNIST and SVHN datasets, while
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Figure 4: Overview of our adopted models. The batch
normalization is only used for RegDB and SYSU-MMOI
datasets. For digit images, we use features extracted from
the FC1 layer, while for person images, we use features ex-
tracted from the batch normalization layer.

ResNet50 is used for RegDB and SYSU-MMO1 datasets (He
et al. 2016). Both of them are pre-trained on the ImageNet
dataset. We take the backbone’s convolutional layers fol-
lowed by an adaptive average pooling layer as the fea-
ture provider. The rest part of the models is shared. Fol-
lowing (Ye et al. 2018a), image features flow into a fully-
connected layer (FC1), followed by a batch normalization
block and a leaky ReLU. Here, the dimension of the out-
put of FC1 is set to 512 for all datasets. Notice that we only
use batch normalization in training models for RegDB and
SYSU-MMOLI datasets. At the end of the model, an FC layer
(FC2) is attached for classification.

We then fine-tune the models for each dataset. For each
class, we fine-tune a single-modal model by using cross
entropy as the criterion for classification. These fine-tuned
single-modal models function as f;, and f, defined in Sec-
tion 3.1 where we take image representations from the FC1
layer for digit images and the batch normalization block for
person images. The training of the cross-modal model is a
bit more difficult. As shown in Fig. 4b, average pooled fea-
tures from two streams are mapped into a uniform space by
a shared FCI1 layer. Besides the classification loss, i.e. cross
entropy, a batch hard triplet loss (Hermans, Beyer, and Leibe
2017) is introduced to push features of the same class to
gather closer. The overall loss function for the cross-modal
model is

L = Lass + ﬁLtriv &)

where (3 is a weight on the triplet loss. In our experiments,
we consistently set = 0.2 and the margin of triplet loss to
0.6 through validation.

During the training, 7 digits (0 to 6) are used for the
MNIST and SVHN datasets only. The remaining three dig-
its are then regarded as zero-shot classes, which is coherent



Query Gallery Rank-1 Rank-5 Rank-10 mAP

Manifold Rank-1 Rank-5 Rank-10 mAP

MNIST MNIST 96.4%  98.5% 99.0%  69.1%
SVHN SVHN  89.0% 97.0% 98.5%  65.4%
SVHN MNIST 59.0%  80.0% 84.9%  48.3%
MNIST SVHN  452% 83.3% 95.6%  46.7%

Table 1: Intra-modal and cross-modal image retrieval perfor-
mance by using k-NN search on digit datasets.

with Fig. 1.

S Experiments

We show the effectiveness of the proposed method on the
above datasets by conducting cross-modal image retrieval
in this section. We particularly explain the way we per-
form retrieval on the MNIST and SVHN datasets. Those
two datasets are made for classification rather than retrieval,
therefore we have to manually set up two subsets for each
of them, i.e. the query set and the gallery set. As described
in Fig. 1, we use the training set of digits 7 to 9 as the
gallery, while samples in the testing set are used as queries.
In the MNIST dataset, the numbers of images in the query
and gallery set are 3,011 and 18,065 respectively. While the
SVHN dataset has 15,299 images in the gallery and 5,274
query images.

In addition to the proposed bi-directional random walk
on heterogeneous manifolds, we also conduct experiments
on homogeneous manifolds for comparison. It only differs
from the heterogeneous way in constructing graphs, namely,
it computes A, and A,, by using cross-modal features.
Here, the homogeneous manifolds refer to manifolds in the
cross-modal uniform feature space. Although they consist of
features from different modalities, we regarded them as ho-
mogeneous manifolds since all the images are intentionally
mapped into a uniform feature space.

5.1 Digit Image Retrieval

We first perform the naive k-NN search for all combinations
of two digit datasets. Table 1 shows the results. The gap be-
tween the performance of intra-modal and cross-modal is
obvious. As we discussed, the distortion on manifolds of
unseen classes caused by aligning classes in the training set
from different modalities is part of the reason.

Table 2 shows the retrieval performance by using the pro-
posed bi-directional random walk scheme. The results are
obtained by mining on homogeneous manifolds in the cross-
modal feature only or by mining on heterogeneous man-
ifolds in the single-modal feature spaces bridged by the
cross-modal feature space. It is obvious that mining on het-
erogeneous manifolds outperforms mining on homogeneous
manifolds in terms of rank-1 and mAP. Some may notice that
the values of rank-5 to rank-20 are sometimes even lower
when mining on heterogeneous manifolds. The explanation
of this issue lies in the pipeline of our approach. The pro-
posed method tries to look for true-positive samples among
the single-modal feature space guided by a few locally near-
est neighbors of the query found in the cross-modal feature

S—M Homo 61.0% 76.2% 81.7%  52.0%
S—M Hetero 61.7%  74.0% 794%  58.4%

M—S Homo 46.7% 84.0%  96.4% 51.7%
M—S Hetero 471%  83.8% 922%  60.3%

Table 2: Cross-modal digit image retrieval performance by
mining on homogeneous and heterogeneous manifolds us-
ing the proposed bi-directional random walk scheme. The
MNIST and SVHN datasets are denoted by their initials and
the first column implies the search direction formatted by
{dataset of query} — {dataset of gallery}.

—e— w/o0 normalization
normalized by query

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Performance v.s. the hyperparameter A. The blue
curve is plotted by ensembling similarity scores obtained
from both search directions without normalization. While
the orange one is plotted by ensembling similarity scores
normalized by each query.

space. This means that our method can obtain reliable re-
trieval results if only some true-positive samples exist in the
initial search results in the cross-modal feature space, but
still fails when none of the true-positives are found in the
very first step. After all, our work focuses on filtering noisy
similarities by mining on heterogeneous manifolds but not
correcting the cross-modal feature distribution. Mining on
heterogeneous manifolds fails when the initial k-NN search
results contain none of the true-positives, while mining on
homogeneous manifolds performs the random walk inside
the cross-modal feature space and may find the first true-
positive sample on the manifold which is not included in the
nearest neighbors measured by the Euclidean distance. It is
possible that we use the results of mining on homogeneous
manifolds as the initial state for the random walk process
of mining on heterogeneous manifolds, but it will double
the computational cost which is not worthy. The improve-
ments on mAP are more convincing. Mining on heteroge-
neous manifolds achieved 9.1% (48.3% to 57.4%) and 5.4%
(52.0% to 57.4%) improvement compared with the base-
line and mining on homogeneous manifolds when search-
ing SVHN’s query images in MNIST’s gallery. Correspond-
ingly, it outperforms the baseline and mining on homoge-
neous manifolds by 13.6% (46.7% to 60.3%) and 8.6%
(51.7% to 60.3%) when searching MNIST’s query images
in SVHN’s gallery.
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Figure 6: Visualization of feature distributions in the thermal, visible, and cross-modal spaces. Images of 10 identities in SYSU-
MMO1’s testing set are sampled and used to provide features. Features from the thermal and visible modalities are separately

denoted by circles and triangles.

Dataset Method Rank-1 Rank-5 Rank-10 Rank-20 mAP
One-stream (Wu et al. 2017) 13.1% - 33.0% 42.5% 14.0%

Two-stream (Wu et al. 2017) 12.4% - 30.4% 41.0% 13.4%

Zero-Padding (Wu et al. 2017) 17.8% - 34.2% 44.3% 18.9%

RegDB TONE (Ye et al. 2018a) 16.9% - 34.0% 44.1% 14.9%
HCML (Ye et al. 2018a) 24.4% - 47.5% 56.8% 20.8%

Baseline 24.5% 36.8% 44.4% 55.1% 23.9%

Proposed (homogeneous) 30.1% 45.5% 53.1% 66.8% 29.3%

Proposed (heterogeneous) 31.1% 42.3% 47.0% 58.6% 321%

One-stream (Wu et al. 2017) 12.0% - 49.7% 66.7% 13.7%

Two-stream (Wu et al. 2017) 11.7% - 48.0% 65.5% 12.9%

Zero-Padding (Wu et al. 2017) 14.8% - 54.1% 71.3% 16.0%

TONE (Ye et al. 2018a) 12.5% - 50.7% 68.6% 14.4%

HCML (Ye et al. 2018a) 14.3% - 53.2% 69.2% 16.2%

SYSU-MMOI BDTR (Ye et al. 2018b) 17.0% - 55.4% 720%  19.7%
cmGAN (Dai et al. 2018) 26.9% - 67.5% 80.6% 27.8%

Baseline 25.3% 51.5% 65.7% 80.2% 26.7%

Proposed (homogeneous) 33.9% 60.3% 75.6% 83.8% 34.9%

Proposed (heterogeneous) 35.9% 61.5% 73.0% 86.1% 38.0%

Table 3: Performance comparison with our baseline and previous works.

In addition, Fig. 5 shows the effect of the hyperparameter
A defined in Eq. (8) by measuring the mAP when searching
digits from SVHN in MNIST. Usually, the two single-modal
feature spaces are complementary and combining them by
certain weights performs better than each side only (in the
case A = 0 or 1), which can also be interpreted as an ensem-
ble trick. Since the graphs are normalized before the random
walk, the similarity scores obtained from both directions are
at the same numerical scale. It is observed that normalizing
the scores again does not help improve the performance.

5.2 Person Image Retrieval

To provide more evidence of the effectiveness of our pro-
posed method, we also conduct experiments on person re-
identification datasets. Since persons in the testing set of two
selected datasets never appear in their training set, it is fair
to regard the person re-identification on these two datasets

as zero-shot image retrieval tasks.

Fig. 6 visualizes the feature distributions for the SYSU-
MMO1 dataset. In the single-modal spaces of thermal and
visible images, features of each identity are relatively
grouped in clusters. However, in the cross-modal feature
space, some samples are off the manifolds of their corre-
sponding classes. We show this issue by highlighting two
typical cases in Fig. 6c¢ for identity #49 (in green) and iden-
tity #85 (in red). This, again, supports our assumption that
mapping images from different modalities into a uniform
space distorts the manifolds of zero-shot data.

Table 3 shows the retrieval performance of our proposed
method and other previous works. We did not put much
effort into training the baseline but it is still comparable
to some methods we list. Mining on heterogeneous mani-
folds outperforms our baseline and mining on homogeneous
manifolds in the cross-modal feature space only, which is



in coherence with the results in Table 2. As discussed in
the above section, the proposed method (heterogeneous)
fails when the initial k-NN search results contain none of
the true-positives, while mining on homogeneous manifolds
performs the random walk inside the cross-modal feature
space and may find the first true-positive sample on the
manifold which is not included in the nearest neighbors
measured by the Euclidean distance. This issue sometimes
leads to worse rank-5 to rank-20 in the RegDB dataset. Un-
like the rank values on the cumulative match characteris-
tic (CMC) curve (DeCann and Ross 2013), the mAP pro-
tocol cares about both the precision and the recall. Our pro-
posed method improved the mAP by 8.2% (23.9% to 32.1%)
and 11.3% (26.7% to 38.0%) in the RegDB and SYSU-
MMO1 datasets respectively, which are no doubt significant
improvements.

6 Conclusion

In this paper, we propose a novel bi-directional random walk
scheme for zero-shot cross-modal image retrieval to ex-
ploit the heterogeneous manifolds in different single-modal
spaces. To the best of our knowledge, this is the very first
time that the random walk on manifolds is used in the cross-
modal retrieval task. We show by experiments that our ap-
proach consistently achieves better retrieval performance on
digit datasets as well as person re-identification datasets.
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