Domain Adaptation: Consistency and Uncertainty

Zhedong Zheng (http://zdzheng.xyz) **Sea-NExT Joint Lab, National University of Singapore**

About Me

Present

Postdoc at NUS with Prof. Tat Seng Chua (蔡达成)

- Ph.D. Advised by Prof. Yi Yang 杨易 (UTS) and Dr. Liang Zheng 郑良 (ANU)
- Published 4 first-author conference papers and 5 first-author journal papers
- GoogleScholar 6000+ citations; Github 7000+ stars
- First-place winner in AlCity Challenge CVPR 2020, CVPR 2021
- IEEE Circuits and Systems Society Outstanding Young Author Award 2021
- (Thanks to my lab~)

Research Interests

- Image Retrieval, Target Re-identification (Cross Cam)
- Image Generation (GAN), Domain Adaptation
- Image-text Understanding, Adversarial Samples

Zhedong.Zheng@student.uts.edu.au

Outline

- Task (Domain Adaptation for Segmentation)
- **Domain Adaptive Semantic Segmentation**
- Future Research Directions

(IJCAI 2020) Unsupervised Scene Adaptation with Memory Regularization in vivo

(IJCV 2021) Rectifying Pseudo Label Learning via Uncertainty Estimation for

Domain Gap

Labeled Source-domain Data

GTA5 GAME

Pixel Level 的标注累啊! 🔗

Unlabeled Target-domain Data

Real World

Domain Adaptation

Labeled Source-domain Data

Training

Unlabeled Target-domain Data

Target-domain Test Data

Test

Domain Adaptation

How to formulate this problem?

- Semi-supervised Learning
- Inductive Learning

Outline

- Task (Domain Adaptation for Segmentation)
- (IJCAI 2020) Unsupervised Scene Adaptation with Memory Regularization in vivo
- (IJCV 2021) Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
- (TIP 2022) Adaptive Boosting for Domain Adaptation: Towards Robust Predictions in Scene Segmentation
- Future Research Directions

Unsupervised Scene Adaptation with Memory Regularization in vivo

Zhedong Zheng, Yi Yang **University of Technology Sydney & Baidu Research**

Motivation: Inconsistency?

Auxiliary Classifier

Segmentation Results (Auxiliary Classifier)

Auxiliary Classifier

Exisiting Semi-Supervised Methods (Memory)

your need !

What is advantages of Memory?

- One teacher model for unlabelled data;
- Save computation cost & Always up-to-the-date; •
- Will the auxiliary classifier hurt the primary classifier? No.

The Proposed Method

Why two stage?

The Proposed Method (Stage-I)

$$L^p_{seg} = -\sum_{h=1}^{H}\sum_{w=1}^{W}\sum_{c=1}^{C}y^i_s\log(F_p(x^i_s)),
onumber \ L^a_{seg} = -\sum_{h=1}^{H}\sum_{w=1}^{W}\sum_{c=1}^{C}y^i_s\log(F_a(x^i_s)),$$

 $L_{adv}^{p} = \mathbb{E}[\log(D_{p}(F_{p}(x_{s}^{i}))) + \log(1 - D_{p}(F_{p}(x_{t}^{j})))],$ $L_{adv}^{a} = \mathbb{E}[\log(D_{a}(F_{a}(x_{s}^{i}))) + \log(1 - D_{a}(F_{a}(x_{t}^{j})))],$

$$L_{mr} = -\sum_{h=1}^{H} \sum_{w=1}^{W} \sum_{c=1}^{C} F_a(x_t^i) \log(\frac{F_p(x_t^i)}{F_a(x_t^i)}) - \sum_{h=1}^{H} \sum_{w=1}^{W} \sum_{c=1}^{C} F_p(x_t^i) \log(\frac{F_a(x_t^i)}{F_p(x_t^i)})$$

The Proposed Method (Stage-II)

h=1 w=1 c=1

$$) \rightarrow L^a_{seg} \leftarrow$$

The Proposed Method (Stage-II)

Ablation Study

Method	without L_{mr}	with L_{mr}
Auxiliary Classifier	40.04	44.45
Primary Classifier	43.11	45.29
Ours (Stage-I)	42.73	45.46

Table 1: Ablation study of the memory regularization on both classifiers, *i.e.*, the auxiliary classifier and the primary classifier, in the Stage-I training. The result suggests that the memory regularization helps both classifiers, especially the auxiliary classifier. The final results of the full model combine the results of both classifiers, and therefore improve the performance further.

Table 2: Ablation study of different losses in the Stage-I training. We gradually add the adversarial loss L_{adv} and the memory regularization L_{mr} into consideration.

Table 3: Ablation study of different losses in the Stage-II training. The result suggests that the memory regularization could prevent the model from overfitting to the noise in the pseudo labels.

Stage-I

Method	L_{seg}	L_{adv}	L_{mr}	mIoU
Without Adaptation	\checkmark			37.23
Adversarial Alignment	\checkmark	\checkmark		42.73
Memory Regularization	\checkmark		\checkmark	43.75
Ours (Stage-I)	\checkmark	\checkmark	\checkmark	45.46

Stage-II

Method	L_{pseg}	L_{mr}	mIoU
Ours (Stage-I)			45.46
Pseudo Label	\checkmark		47.90
Ours (Stage-II)	\checkmark	\checkmark	48.31

Comparison with the State-of-the-art

Method	Backbone	Road	SW	Build	Wall	Fence	Pole	TL	TS	Veg.	Terrain	Sky	PR	Rider	Car	Truck	Bus	Train	Motor	Bike	mIoU
Source	DDN 26	42.7	26.3	51.7	5.5	6.8	13.8	23.6	6.9	75.5	11.5	36.8	49.3	0.9	46.7	3.4	5.0	0.0	5.0	1.4	21.7
CyCADA [Hoffman et al., 2018]	DKIN-20	79.1	33.1	77.9	23.4	17.3	32.1	33.3	31.8	81.5	26.7	69.0	62.8	14.7	74.5	20.9	25.6	6.9	18.8	20.4	39.5
Source	DPN 105	36.4	14.2	67.4	16.4	12.0	20.1	8.7	0.7	69.8	13.3	56.9	37.0	0.4	53.6	10.6	3.2	0.2	0.9	0.0	22.2
MCD [Saito et al., 2018]	DKN-105	90.3	31.0	78.5	19.7	17.3	28.6	30.9	16.1	83.7	30.0	69.1	58.5	19.6	81.5	23.8	30.0	5.7	25.7	14.3	39.7
Source		75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
AdaptSegNet [Tsai et al., 2018]		86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
SIBAN [Luo <i>et al.</i> , 2019a]	Doopl aby?	88.5	35.4	79.5	26.3	24.3	28.5	32.5	18.3	81.2	40.0	76.5	58.1	25.8	82.6	30.3	34.4	3.4	21.6	21.5	42.6
CLAN [Luo et al., 2019b]	DeepLa0v2	87.0	27.1	79.6	27.3	23.3	28.3	35.5	24.2	83.6	27.4	74.2	58.6	28.0	76.2	33.1	36.7	6.7	31.9	31.4	43.2
APODA [Yang et al., 2020]		85.6	32.8	79.0	29.5	25.5	26.8	34.6	19.9	83.7	40.6	77.9	59.2	28.3	84.6	34.6	49.2	8.0	32.6	39.6	45.9
PatchAlign [Tsai et al., 2019]		92.3	51.9	82.1	29.2	25.1	24.5	33.8	33.0	82.4	32.8	82.2	58.6	27.2	84.3	33.4	46.3	2.2	29.5	32.3	46.5
AdvEnt [Vu et al., 2019]	DeepLabv2	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
Source	Doopl aby?	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29.2
FCAN [Zhang et al., 2018a]	DeepLa0v2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	46.6
Source		71.3	19.2	69.1	18.4	10.0	35.7	27.3	6.8	79.6	24.8	72.1	57.6	19.5	55.5	15.5	15.1	11.7	21.1	12.0	33.8
CBST [Zou et al., 2018]	DeepLabv2	91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
MRKLD [Zou et al., 2019]		91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
Source		51.1	18.3	75.8	18.8	16.8	34.7	36.3	27.2	80.0	23.3	64.9	59.2	19.3	74.6	26.7	13.8	0.1	32.4	34.0	37.2
Our (Stage-I)	DeepLabv2	89.1	23.9	82.2	19.5	20.1	33.5	42.2	39.1	85.3	33.7	76.4	60.2	33.7	86.0	36.1	43.3	5.9	22.8	30.8	45.5
Our (Stage-II)	—	90.5	35.0	84.6	34.3	24.0	36.8	44.1	42.7	84.5	33.6	82.5	63.1	34.4	85.8	32.9	38.2	2.0	27.1	41.8	48.3

Table 4: Quantitative results on GTA5 \rightarrow Cityscapes. We present pre-class IoU and mIoU. The best accuracy in every column is in **bold**.

Method	Backbone	Road	SW	Build	Wall*	Fence*	Pole*	TL	TS	Veg.	Sky	PR	Rider	Car	Bus	Motor	Bike	mIoU*	mIoU
Source	DDN 105	14.9	11.4	58.7	1.9	0.0	24.1	1.2	6.0	68.8	76.0	54.3	7.1	34.2	15.0	0.8	0.0	26.8	23.4
MCD [Saito et al., 2018]	DKIN-105	84.8	43.6	79.0	3.9	0.2	29.1	7.2	5.5	83.8	83.1	51.0	11.7	79.9	27.2	6.2	0.0	43.5	37.3
Source		55.6	23.8	74.6	_	_	_	6.1	12.1	74.8	79.0	55.3	19.1	39.6	23.3	13.7	25.0	38.6	_
SIBAN [Luo <i>et al.</i> , 2019a]		82.5	24.0	79.4	_	_	_	16.5	12.7	79.2	82.8	58.3	18.0	79.3	25.3	17.6	25.9	46.3	_
PatchAlign [Tsai et al., 2019]	DeemLehy?	82.4	38.0	78.6	8.7	0.6	26.0	3.9	11.1	75.5	84.6	53.5	21.6	71.4	32.6	19.3	31.7	46.5	40.0
AdaptSegNet [Tsai et al., 2018]	DeepLabv2	84.3	42.7	77.5	—	—	_	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	46.7	_
CLAN [Luo et al., 2019b]		81.3	37.0	80.1	—	—	_	16.1	13.7	78.2	81.5	53.4	21.2	73.0	32.9	22.6	30.7	47.8	_
APODA [Yang et al., 2020]		86.4	41.3	79.3	_	—	_	22.6	17.3	80.3	81.6	56.9	21.0	84.1	49.1	24.6	45.7	53.1	_
AdvEnt [Vu et al., 2019]	DeepLabv2	85.6	42.2	79.7	8.7	0.4	25.9	5.4	8.1	80.4	84.1	57.9	23.8	73.3	36.4	14.2	33.0	48.0	41.2
Source		64.3	21.3	73.1	2.4	1.1	31.4	7.0	27.7	63.1	67.6	42.2	19.9	73.1	15.3	10.5	38.9	40.3	34.9
CBST [Zou et al., 2018]	DeepLabv2	68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	48.9	42.6
MRKLD [Zou et al., 2019]		67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	50.1	43.8
Source		44.0	19.3	70.9	8.7	0.8	28.2	16.1	16.7	79.8	81.4	57.8	19.2	46.9	17.2	12.0	43.8	40.4	35.2
Ours (Stage-I)	DeepLabv2	82.0	36.5	80.4	4.2	0.4	33.7	18.0	13.4	81.1	80.8	61.3	21.7	84.4	32.4	14.8	45.7	50.2	43.2
Ours (Stage-II)		83.1	38.2	81.7	9.3	1.0	35.1	30.3	19.9	82.0	80.1	62.8	21.1	84.4	37.8	24.5	53.3	53.8	46.5

Table 5: Quantitative results on SYNTHIA \rightarrow Cityscapes. We present pre-class IoU, mIoU and mIoU*. mIoU and mIoU* are averaged over 16 and 13 categories, respectively. The best accuracy in every column is in **bold**.

From 37.2% to 48.3% On GTA5 -> CityScapes

From 35.2% to 46.5% On SYNTHIA -> CityScapes

What is advantages of Memory?

- One teacher model for unlabelled data; lacksquare
- Save computation cost & Always up-to-the-date;
- Will the auxiliary classifier hurt the primary classifier? No.

But pseudo labels are noisy.

Outline

- Task (Domain Adaptation for Segmentation)
- (IJCAI 2020) Unsupervised Scene Adaptation with Memory Regularization in vivo
- (IJCV 2021) Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
- (TIP 2022) Adaptive Boosting for Domain Adaptation: Towards Robust Predictions
 in Scene Segmentation
- Future Research Directions

Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation

Zhedong Zheng, Yi Yang University of Technology Sydney INTERNATIONAL JOURNAL OF COMPUTER VISION

Motivation: Pseudo Labels contain lots of noise.

(a) unlabeled target-domain inputs

(b) generated pseudo labels

terrain

unlabeled

vegetation

traffic sgn

🗖 motorcycle 📕 bike

(c) ground-truth labels

Motivation: Pseudo Labels contain lots of noise.

Table 5 Variance Regularization vs. Handcrafted Threshold							
Methods	Threshold	mIoU					
MRNet Zheng and Yang (2020)	_	45.5					
Pseudo Learning	> 0.99	45.5					
Pseudo Learning	> 0.95	47.2					
Pseudo Learning	> 0.90	48.4					
Pseudo Learning	> 0.80	48.1					
Pseudo Learning	> 0.70	48.2					
Pseudo Learning	> 0.00	48.3					
Ours	_	50.3					

The proposed method is free from hand-crafted threshold. '> k' denotes that we only utilize the label confidence > k to train the model. We report the mIoU accuracy on $GTA5 \rightarrow Cityscapes$

Threshold?? Automatic Threshold.

Background: Uncertainty

- 1. Epistemic Uncertainty Model Uncertainty
- 2. Aleatoric Uncertainty Data Uncertainty

Background: Uncertainty Reference

- 1. Robust Person Re-identification by Modelling Feature Uncertainty. ICCV 2019
- 2. 周志华 深度学习 贝叶斯网络
- 3. Training deep neural networks on noisy labels with bootstrapping. ICML workshop
- 4. What uncertainties do we need in bayesian deep learning for computer vision? NeurIPS, 2017.
- 5. (Reviewer 补充) Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In ICML.

Background: Uncertainty

Estimate Data Uncertainty in Regression

Assume your target variable follows a Gaussian distribution

Take the negative log likelihood to obtain the objective function

$$L = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2\sigma(x_i)^2} |y_i - f(x_i)|^2 + \frac{1}{2} \log \sigma(x_i)^2$$

Estimating an extra output

Original predictive output

• Another explanation: assume ground truth y follows Dirac delta function, then take KL divergence

旷视上海研究院院长危夷晨:不确定性学习在视觉识别中的应用

https://www.bilibili.com/video/BV1RJ411D7QA

MEGVII町视

将门

Background: High Certainty

1. 一般模糊的物体,在深度估计时会觉得很 远(容易高估)。而清晰的物体,一般会觉 得很近(容易低估)。 2. 一般消失线比较明显的物体,比如向远方 延伸而消失的路啊,深度估计比较容易。而 像没什么特别的强,就很难估计深度。

Monoscopic Depth Cues	Examples	Appear Nearer	Appear Farther
 Size of objects	Tree	Larger	Smaller
Texture	Grass patch	High quality texture	Low quality, blurry
Linear Perspective	Curb line	-	Converge to horizo

Size

Rene Magritte, The Listening Room

Background: Low Certainty

Interposition

Position, Probability, Size

Uncertainty Formulation

Large Variance = More Noise

(d) Pseudo Label

(e) Ground-truth Label

(f) Noisy Label

[1.0	
	- 0.8	
	- 0.6	
	- 0.4	
-	- 0.2	
	0.0	

Uncertainty as Automatic Threshold to Rectify

$L_{rect} = \mathbb{E}[_{\overline{V}}]$ $ar(p_t)$ Small weight for high uncertain label.

Experiment

Pseudo Label Quality

Table 6 Ablation study of the impact of different pseudo labels

Methods	Pseudo Label	mIoU
AdaptSegNet Tsai et al. (2018)	_	42.4
Pseudo Learning	AdaptSegNet	46.8
Ours	AdaptSegNet	47.4
MRNet Zheng and Yang (2020)	_	45.5
Pseudo Learning	MRNet	48.3
Ours	MRNet	50.3

The model name in the 'Pseudo Label' column denotes that we deploy the pseudo label generated by the corresponding model

Dropout

Table 7 Ablation study of dropout rate on $GTA5 \rightarrow$ Cityscapes

Dropout Rate	mIoU
Pseudo Learning	48.3
Droprate $= 0$	49.6
Droprate $= 0.1$	50.3
Droprate $= 0.3$	50.1
Droprate $= 0.5$	50.1
Droprate $= 0.7$	50.0

Experiment

Variance Vs Confidence Score

Ground Truth

Our Prediction

predictions, while the prediction confidence usually focuses on the edge Fig. 5 Qualitative results of the discrepancy between the prediction of the two different classes. (Best viewed in *color*) variance and the prediction confidence. We could observe that the prediction variance used in this work has more overlaps with the ambiguous

Prediction Variance

Prediction Confidence

Adaptive Boosting for Domain Adaptation: Towards Robust Predictions in Scene Segmentation

Zhedong Zheng, Yi Yang University of Technology Sydney IEEE TRANSACTIONS ON IMAGE PROCESSING

Figure 3. The brief pipeline of the proposed method. There are two main components, *i.e.*, Adaptive Sampler and Student Aggregation. We modify the training data distribution to learn complementary "weak" models, preventing the model from over-fitting. **Different from existing methods, the pipeline enables interactions between learned models and the data sampler.** The proposed method is orthogonal to most existing scene segmentation domain adaptation approaches (in the rounded rectangle).

https://arxiv.org/pdf/2103.15685.pdf

Outline

- Task (Domain Adaptation for Segmentation)
- (IJCAI 2020) Unsupervised Scene Adaptation with Memory Regularization in vivo
- (IJCV 2021) Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
- (TIP 2022) Adaptive Boosting for Domain Adaptation: Towards Robust Predictions in Scene Segmentation
- Future Research Directions

Future Research Directions

- Old-School Theory can Do Many Things. (Contrastive Learning? Ladder Network? Adaboost for Domain Adaptation.)
- Prior Knowledge always helps. (3D human structure etc.)

[1] Adaptive Boosting for Domain Adaptation: Towards Robust Predictions in Scene Segmentation [2] Parameter-Efficient Person Re-identification in the 3D Space

Thanks a lot !

Zhedong Zheng (http://zdzheng.xyz) NExT Research Centre, National University of Singapore

INTERNATIONAL JOURNAL OF COMPUTER VISION

IEEE TRANSACTIONS ON IMAGE PROCESSING

IJCAI-PRICAI YOKOHAMA 2020

