ACM multimedia

?fi«:ﬂctwlzlgr:r;leg?iczizig Trlcj):)/;ifcll cC))r:)en-world Instance Re-identification l‘m
Billion-scale Approximate
Nearest Neighbor Search

Yusuke Matsui
The University of Tokyo

9 4

Nearest Neighbor Search; NN

_)
X1, X5, e, XN
— _
x, € RP

>N D-dim database vectors: {x,}}_,

Nearest Neighbor Search; NN

Result
0.23
15| e (D L (328
argmin Hq Xnll3
0.65 X1, X2, e, XN ne{l 2,..,N} 0.72
11.43 N - 1. 68
q € RP x, € RP

>N D-dim database vectors: {x,, }_,
»Given a query ¢, find the closest vector from the database
»0One of the fundamental problems in computer science

»Solution: linear scan, O(ND), slow ®

Approximate Nearest Neighbor Search; ANN

Result

0.23 |

N — ey N
argmin [1q — x, /15 gy 3

0.65 X1, X2, e, XN ne{1,2,..,N} 0.72

11.43 N A 1.68.

g € RP x, € RP X4

» Faster search
»Don’t necessarily have to be exact neighbors
» Trade off: runtime, accuracy, and memory-consumption

Result

0.20
3.25
0.72
1.68.

X174

Approximate Nearest Neighbor SWNN

0.23

3.15 o —) argmin ||q — x,,||5
0.65 carc X1, X2,) XN n€e{1,2,..,.N}

1.43 N—

q € R” BN x, €ER” 10° to 10°

32GB RAM

» Faster search

»Don’t necessarily have to be exact neighbors

» Trade off: runtime, accuracy, and memory-consumption
» A sense of scale: billion-scale data on memory

NN/ANN for CV

https://about.mercari.com/press/news/article/20190318_image_search/

)

Image retrieval

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

| - A
| .
, &
@ %
’ &
K
i
H N \
['
¥ i
1
LI '
!]
v
.
A
.

kNN recognition

Intra-modality Pose Viewpoint | Background | Occlusion | Illumination

Artist i Witness

L Y
Person Re-identification

[
[

LW e

Clustering

https://jp.mathworks.com/help/vision/ug/image-classification-with-bag-of-visual-words.html

image approximate nearest neighbor feature histogram feature vector

word count

12345+
visual word index

» Originally: fast construction of bag-of-features
» One of the benchmarks is still SIFT

cheat-sheet for ANN in Python (as of 2020. Can be installed by conda or pip)

: Exact nearest neighbor search - : If out of GPU-memory, make M smaller :
Jaih L P TS t‘l llllllllllllllllllll = IfoutofGPU memory ‘lllllllllllllllllllllllllll.‘ lllllllllllllllllllll L]

‘ Yes faiss-gpu: linear scan (GpulndexFlatL2) faiss-gpu: ivfpqg (GpulndexIVFPQ)
If topk > 2048 /
| Have GPU(s)? | faiss-cpu: linear scan (IndexFlatL2) gl U €1 SR HMETET, €

No Need more accurate results

Require fast data addition

If slow... ‘

About: 103 < N < 106 _

Would like to run
subset-search

pessssssssssssssssssanssnns e Sfe{aaTa ol If slow, or out Would like to run from
. e . el . several processes
= Alternative: faiss.IndexHNSWFlat in faiss-cpu : of memory

» Same algorithm in different libraries
.. - Would like to adjust

the performance Adjust the IVF parameters:
Make nprobe larger = Higher accuracy but slower
Would like to adjust
the performance
Adjust the PQ parameters: Make M smlaller

Note: Assuming D = 100. The size of the problem is determined by DN. If 100 <« D, run PCA to reduce D to 100

faiss-cpu: hnsw + ivfpq

(IndexHNSWFlat + IndexIVFPQ)

If out of memory

Part 1.
Nearest Neighbor Search

Part 2:
Approximate Nearest Neighbor Search

Part 1.
Nearest Neighbor Search

Part 2:
Approximate Nearest Neighbor Search

Nearest Neighbor Search

Result
0.23
315 _— . (328
515 v~ |m argmin uq Xl
: 1) A2y ===y AN TLE{l 2,...N} 0.72
11.43 N A 1. 68
g € RP x, € RP

»Should try this first of all
»Introduce a naive implementation
»Introduce a fast implementation
v’ Faiss library from FAIR (you’ll see many times today. CPU & GPU)
» Experience the drastic difference between the two impls

M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5

M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5

def 12sgr(g, x): parfor g in Q: ﬁ Parallelize

diff = 0.0 for x in X: query-side

Select min by heap,
but omit it now

diff += (q[d] - x[d])**2

for (d = 0; d < D; ++d): 12sgr(q, x)‘j

return diff

M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5

def 12sgr(g, x): parfor g in Q: ﬁ Parallelize

diff = 0.0 for x in X: query-side

diff += (q[d] - x[d])**2 but omit it now

for (d = @3 d < D3 ++d): lzsqr\(q’ X)ﬁSelectminbyheap,

return diff

it M < 20 :

compute ||q — x||5 by SIMD
else

compute |lq — x||5 = |1q]l5 — 2q" x + ||x||5 by BLAS

M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5

def 12sgr(g, x): parfor g in Q: ﬁ Parallelize

diff = 0.0 for x in X: query-side

diff += (Q[d] - X[d])**z but omit it now

for (d = @3 d < D3 ++d): lzsqr\(q’ X)ﬁSelectminbyheap,

return diff

itM < 20 :

compute ||q — x||5 by SIMD
else

compute |lq — x||5 = |1q]l5 — 2q" x + ||x||5 by BLAS

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps();)/
while (d >= 8) { ;

mx = _mm256_loadu_ps (x); X += 8; float: 32bit
my = _mm256_loadu_ps (y); y += 8;

const a_m_bl = mx - my;

msuml += a_m_bl * a_m_bil;

d -= 8;

msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) {
mx = _mm_loadu_ps (X); x += 4;
my = _mm_loadu_ps (y); y += 4;
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y);

ambl =mx - my;
msum2 += a_m bl * a m _bil;

}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2);

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps();)/
while (d >= 8) { float: 32bit » 256bit SIMD Register
mx = _mm256_loadu_ps (x); X += 8; - .
ny = Tnm256_loadu ps (v): y 4= 8: » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; MX my
d -= 8;
}

msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) {
mx = _mm_loadu_ps (X); x += 4;
my = _mm_loadu_ps (y); y += 4;
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y);

ambl =mx - my;
msum2 += a_m bl * a m _bil;

}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2);

”x — y”% by SIMD Rename variables ff)r the
sake of explanation

D

=31

v

def 12sqr(x, v): IR
diff = 0.0
for (d = @; d < D; ++d):
diff += (x[d] - y[d])**2
return diff

fvec_L2sqr (const * X, <
const *y,
5 x [TTTITTT
msuml = _mm256_setzero_ps();)/
while (d >= 8) {

mx = _mm256_loadu_ps (x); x += 8;

my = _mm256_loadu_ps (y); y += 8; v
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX
d -= 8;

msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) {
mx = _mm_loadu_ps (x); x += 4;
my = _mm_loadu_ps (y); y += 4;
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y);

ambl =mx - my;
msum2 += a_m bl * a m _bil;

}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2);

my

float: 32bit

» 256bit SIMD Register
» Process eight floats at once

17

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps();)/
while (d >= 8) { float: 32bit » 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; . | .
ny = Tnm256_loadu ps (v): y 4= 8: | » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; MX my
d -= 8;
}
; 23235
msum2 = _mm256_extractfl28 ps(msuml, 1); ‘0“"‘.‘
msum2 += _mm256_extractf128 ps(msuml, 0); ADAAARALRAR
et AR AR
mx = _mm_loadu_ps (x); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y);
ambl =mx - my;
msum2 += a_m bl * a m _bil;
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss 32 (msum2);]_Eg

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const Y, X return diff
d)
msuml = _mm256_setzero_ps();)/
while (d >= 8) { float: 32bit » 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; . | .
ny = mm256_loadu ps (y): y += 8. | > Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX my
d -= 8;
}
; 2393
msum2 = _mm256_extractfl128 ps(msuml, 1); ‘0"“‘.‘
msum2 += _mm256_extractfl128 ps(msuml, 0); ADAAARALRAR
(@) ¢ AR AR
mx = _mm_loadu _ps (X); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_ —
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4; <>
) <
o] <2
o] <2
} W0 L0 C oSS O
s o) ¢ PRIV
mx = masked read (d, x);
my = masked_read (d, y); msuml E
ambl =mx - my;
msum2 += a_m bl * a m _bil;
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss 32 (msum2);]_E)

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps();)/
while (d >= 8) { 1;loat 39bit > 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; : .
ny = Tnm256_loadu ps (v): y 4= 8: » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; MX my
d -= 8;

msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) {
mx = _mm_loadu_ps (X); X += 4;
my = _mm_loadu_ps (y); y += 4;
const ambl =mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y); msuml E

ambl =mx - my;
msum2 += a_m bl * a m _bil;

}

msum2 = _mm_hadd_ps (msum2, msum2);

msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); ;2()

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps(); y
while (d >= 8) { 'f;loat 39bit > 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; . | .
ny = mm256_loadu ps (y): y += 8. » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX my
d -= 8;
}
; >SS
msum2 = _mm256_extractfl28 ps(msuml, 1); ‘0"“‘.‘
msum2 += _mm256_extractf128 ps(msuml, 0); ADAAARALRAR
e ¢ AR AR R
mx = _mm_loadu _ps (X); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d > 0) {
mx = masked read (d, x);
my = masked_read (d, y); msuml E
ambl =mx - my;
msum2 += a_m bl * a m _bil;
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss 32 (msum2); 21

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const Y, X return diff
d)
msuml = _mm256_setzero_ps();)/
while (d >= 8) { float: 32bit » 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; . | .
ny = mm256_loadu ps (y): y += 8. > Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX my
d -= 8;
}
; 2393
msum2 = _mm256_extractfl128 ps(msuml, 1); ‘0"“‘.‘
msum2 += _mm256_extractfl128 ps(msuml, 0); ADAAARALRAR
(@) ¢ AR AR
mx = _mm_loadu _ps (X); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_ —
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4; <>
) <
o] <2
o] <2
} W0 L0 C oSS O
s o) ¢ PRIV
mx = masked read (d, x);
my = masked_read (d, y); msuml E
ambl =mx - my;
msum2 += a_m bl * a m _bil;
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss 32 (msum2); ;2;2

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const Y, X return diff
d)
msuml = _mm256_setzero_ps();)/
while (d >= 8) { float: 32bit » 256bit SIMD Register
mx = _mm256_loadu_ps (x); X += 8; . | .
ny = mm2s6 loadu ps (v): y 4o 8. » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m_bl * a_m_bi; mX my
d -= 8;
}
: 23232
msum2 = mm256_extractfl28 ps(msuml, 1); ‘0“"‘.‘
msum2 += _mm256_extractf128 ps(msuml, 0); ADAAARALRAR
e CEEEIEEE
mx = _mm_loadu_ps (x); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; _— —
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4; <
B) <<
<>
I oK < >
} o S oS0 S0 oS

<
<
<
<
QN
<

if (d > 0) { gg’g?
mx = masked read (d, x);

my = masked_read (d, y); mSlJml E

a_m_bl = mx - my;

msum2 += a_m bl * a m _bil;

¥ @

msum2 = _mm_hadd_ps (msum2, msum2); l l l

msum2 = _mm_hadd_ps (msum2, msum2); msum2 ﬂ » 128bit SIMD Register I
return _mm_cvtss_f32 (msum2); ;253

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps();)/
while (d >= 8) { ;

mx = _mm256_loadu_ps (x); X += 8; float: 32bit
my = _mm256_loadu_ps (y); y += 8;

const a_m_bl = mx - my;

msuml += a_m_bl * a_m_b1; mX my ﬂ » 128bit SIMD Register I

d -= 8;

msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) { @@@@

mx = _mm_loadu _ps (x); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_ —
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;

}

if (d > 0) { qg’gg’gg’g?
mx = masked read (d, x); E
my = masked_read (d, y); msumz
a_m_bl = mx - my;
msum2 += a_m bl * a m _bil;

}

msum2 = _mm_hadd_ps (msum2, msum2);

msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); ;2[1

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = mm256_setzero ps(); y 4 The rest I
while (d >= 8) { ;
mx = _mm256_loadu_ps (x); X += 8; float: 32bit
my = _mm256_loadu_ps (y); y += 8;
const a_m_bl = mx - my;
msuml += a_m bl * a_m bil; MX 000 my ojofo ﬂ » 128bit SIMD Register I
d -= 8;
}

msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) { @@@@

mx = _mm_loadu _ps (X); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_ —
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;

d -= 4;
}

if (d > 0) { qg’qg’qg’g?
mx = masked_read (d, x); E
my = masked_read (d, y); msumz
a_m_bl = mx - my;
msum2 += a_m bl * a m_bil;

}

msum2 = _mm_hadd_ps (msum2, msum2);

msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); ;ZES

”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
{
msuml = mm256_setzero ps(); y 4 The rest I
while (d >= 8) { ;
mx = _mm256_loadu_ps (x); X += 8; float: 32bit
my = _mm256_loadu_ps (y); y += 8;
const a_m_bl = mx - my;
msuml += a_m_bl * a_m_bl; MX o|ojo my o|ofo ﬂ » 128bit SIMD Register I
d -= 8;
}
msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);
) AAR
mx = _mm_loadu_ps (x); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_ —
const ambl =mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
i@ o) o e
mx = masked read (d, x);
my = masked read (d, y); msumz
ambl =mx - my; |/ //
msum2 += a_m bl * a m _bil; Gi jr)
¥
msum2 = _mm_hadd_ps (msum2, msum2); @l /
msum2 = _mm_hadd_ps (msum2, msum2); m l
return _mm_cvtss_f32 (msum2); 26
) []

”x — y”z by SIMD BUEE variables for the def 12sqr(x, y): Ref.
2 sake of explanation diff = 0.0
D=31 for (d = @; d < D; ++d):

fvec_L2sgr (const diff += (x[d] - y[d])**2

* X, <
const *y, return diff
d) X '
{
msuml = mm256_setzero ps(); y 4 The rest I

» SIMD codes of faiss are simple and easy to read

» Being able to read SIMD codes comes in handy
sometimes; why this impl is super fast

» Another example of SIMD L2sqgr from HNSW:

https://github.com/nmslib/hnswlib/blob/master/hnswlib/space [2.h

r;lx = masked read (d, x); T T T
my = masked read (d, y); msumz E
ambl =mx - my; |/ //
msum2 += a_m bl * a m _bil; Gi jr)
}
|/

msum2 = mm_hadd_ps (msum2, msum2); @
msum2 = _mm_hadd_ps (msum2, msum2); m l
return _mm_cvtss 32 (msum2); |:|

https://github.com/nmslib/hnswlib/blob/master/hnswlib/space_l2.h

M D-dim query vectors Q=1{q9.,9,,..,q9y}
N D-dim database vectors X = {x1,X,, ..., Xy}

Task : Given g € Q and x € X, compute ||q — x||5

def 12sgr(g, x): parfor g in Q: ﬁ Parallelize

diff = 0.0 for x in X: query-side

for (d = 0; d < D; ++d): 1259r(d, X) ~Jselect min by heap,
diff += (q[d] - x[d])**2 ‘ﬁ

but omit it now

return diff

it M < 20 :

compute ||q — x||5 by SIMD
else

compute |lq — x||5 = llqll5 — 2q"x + ||x]|5 by BLAS

Compute [lg — x|I5 = lIqll5 — 2q " x + ||x]|5 with BLAS
Stack M D-dim query vectors to a D X M matrix: Q=1q94.495,..,9y] € RD*xM
Stack N D-dim database vectorstoa D X N matrix: X =[x, X5, ..., xy] € RP*N

Compute tables |SIMD—acceIeratedfunction|

g_norms = norms(Q) # llqill5 llgzll5, ... llayll3
X_nor‘ms = nor‘mS(X) # laq 5 122015 o) Iz I3
ip = sgemm_(Q, X, ..) # Q'X

\l » Matrix multiplication by BLAS

» Dominant if Q and X are large

» The difference of the background matters:
v" Intel MKL is 30% faster than OpenBLAS

Scan and sum
parfor (m = @; m < M; ++m):

for (n = ©@; n < N; ++n):
dist = g norms[m] + X norms[n] - ip[m][n]

(am —x2) ([2al2) (%) (@ Omd &

NN in GPU (faiss-gpu) is 10x faster than NN in CPU (faiss-cpu)

Benchmark: https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks

> NN-GPU always compute ||ql|l5 — 2q " x + ||x]|5

» k-means for 1M vectors (D=256, K=20000)

v" 11 min on CPU

v' 55 sec on 1 Pascal-class P100 GPU (float32 math) >
v' 34 sec on 1 Pascal-class P100 GPU (float16 math)

v’ 21 sec on 4 Pascal-class P100 GPUs (float32 math)

v' 16 sec on 4 Pascal-class P100 GPUs (float16 math)

x10 faster HREN

» If GPU is available and its memory is enough, try GPU-NN
» The behavior is little bit different (e.g., a restriction for top-k)

https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks

Reference

» Switch implementation of L2sqr in faiss:

[https://github.com/facebookresearch/faiss/wiki/Implementation-notes##matrix-multiplication-to-do-many-I2-
distance-computations]

» Introduction to SIMD: a lecture by Markus Pischel (ETH) [How to Write Fast

Numerical Code - Spring 2019], especially [SIMD vector instructions]

v' https://acl.inf.ethz.ch/teaching/fastcode/2019/
v' https://acl.inf.ethz.ch/teaching/fastcode/2019/slides/07-simd.pdf

> SIMD codes for faiss [https://github.com/facebookresearch/faiss/blob/master/utils/distances simd.cpp]

» L2sqr benchmark including AVX512 for faiss-L2sqr

[https://gist.github.com/matsui528/583925f88fcb08240319030202588c74]

31

https://github.com/facebookresearch/faiss/wiki/Implementation-notes#matrix-multiplication-to-do-many-l2-distance-computations
https://acl.inf.ethz.ch/teaching/fastcode/2019/
https://acl.inf.ethz.ch/teaching/fastcode/2019/slides/07-simd.pdf
https://acl.inf.ethz.ch/teaching/fastcode/2019/
https://acl.inf.ethz.ch/teaching/fastcode/2019/slides/07-simd.pdf
https://github.com/facebookresearch/faiss/blob/master/utils/distances_simd.cpp
https://gist.github.com/matsui528/583925f88fcb08240319030202588c74

Part 1.
Nearest Neighbor Search

Part 2:
Approximate Nearest Neighbor Search

32

— Inverted index + data compression

Space partition ; Data compression
L » k-means : » Raw data
T » PQ/OPQ ; » Scalar quantization
O » Graph traversal ! » PQ/OPQ
it > etc... | > etc...
c :
O 1 JHHEREEN
— — [[[]
S — [T

// I :
|
~ For raw data: Acc. ©, Memory: ® = ¢ For compressed data: Acc. ®, Memory: ©
U Look-up-based -]
TS Locality Sensitive Hashing (LSH) 8_3; — Linear-scan by
N 0.68 » - Asymmetric Distance
!I: | lo71 :)
o Tree / Space Partitioning .
o Hamming-based
'é 8'2‘; j Linear-scan by
Graph traversal 0.68 » . Hamming distance
0.71 o

10°

10°

Space partition

— Inverted index + data compression

Data compression

» Raw data
» Scalar quantization
» PQ/0OPQ
> etc...

v

@

) » k-means
TU > PQ/OPQ

O » Graph traversal
i > etc...

c :
09 . "‘-‘_\.‘.‘7

~ For raw data: Acc. ©, Memory: ® =

Q . " :
T Locality Sensitive Hashing (LSH)
O

wn

I

g Tree / Space Partitioning

Graph traversal

~ For compressed data: Acc. ®, Memory: ©

Look-up-based

0.34

0.22 » ID: 2
0.68 ID: 123
0.71

J

Hamming-based
0.34

0.22
0.68
0.71

® ® =] ®

}
}

Linear-scan by
Asymmetric Distance

Linear-scan by
Hamming distance

Locality Sensitive Hashing (LSH)
» LSH = Hash functions + Hash tables
» Map similar items to the same symbol with a high probability

d
_ BN

X13
o

Search [N
q - by the Euclidean distance
o257/
: m

Locality Sensitive Hashing (LSH)
» LSH = Hash functions + Hash tables
» Map similar items to the same symbol with a high probability

— |:|\ E.g., random projection [Dater+, SCG 04]

X1 H() = [(), e, by (O

a’x+b
S I u/i@ @) =

w

Search [N
q - by the Euclidean distance
o257/
: m

Locality Sensitive Hashing (LSH)

> 1CH — Lach fiinctinne 4 HAach +ahlac

©:
» Math-friendly
» Popular in the theory area (FOCS, STOC, ...)
®:
» Large memory cost
v Need several tables to boost the accuracy
v' Need to store the original data, {x,,}_;, on memory

» Thus, in recent CV papers, LSH has been treated as a classic-

method ®®®

» Data-dependent methods such as PQ are better for real-world data

37

I
.
/ OB—HPY —_ Compare q with x4, Xc, X5, ...
by the Euclidean distance

In fact:
» Consider a next candidate ™ practical memory consumption

(Multi-Probe [Lv+, VLDB 07])
» A library based on the idea: FALCONN

[FALCONN-LIB / FALCONN <® Unwatch a2 TrStar | 852 Y Fork 164
a ‘ O | l I I <> Code Issues 51 Pull requests 0 Actions Projects 0 Wiki Security 0 Insights
FAst Lockups of Cosine and Other Nearest Neighbors (based on fast locality-sensitive hashing) http://falc
ghb h Ish

https://github.com/falconn-1ib/falconn

$> pip install FALCONN

fix details

ggggggggggg

table = falconn.LSHIndex(params cp) oo
table.setup(X-center)
query object = table.construct query object()

query parameter config here

query object.find nearest neighbor(Q-center, topk)

A number of major changes implemented by Alejandro Cassis. llya Razen

© Faster data addition (than annoy, nmslib, ivfpq)
© Useful for on-the-fly addition
® Parameter configuration seems a bit non-intuitive

39

https://github.com/falconn-lib/falconn

Reference
» Good summaries on this field: CVPR 2014 Tutorial on Large-Scale Visual
Recognition, Part I: Efficient matching, H. Jégou

[https://sites.google.com/site/Isvrtutorialcvprl4/home/efficient-matching]

» Practical Q&A: FAQ in Wiki of FALCONN [nttps://sithub.com/FALCONN-LIB/FALCONN/wiki/FAQ]

» Hash functions: M. Datar et al., “Locality-sensitive hashing scheme based on
p-stable distributions,” SCG 2004.

» Multi-Probe: Q. Lv et al., “Multi-Probe LSH: Efficient Indexing for High-
Dimensional Similarity Search”, VLDB 2007

» Survey: A. Andoni and P. Indyk, “Near-Optimal Hashing Algorithms for
Approximate Nearest Neighbor in High Dimensions,” Comm. ACM 2008

https://sites.google.com/site/lsvrtutorialcvpr14/home/efficient-matching
https://github.com/FALCONN-LIB/FALCONN/wiki/FAQ

10°

10°

Space partition

— Inverted index + data compression

Data compression

» Raw data
» Scalar quantization
» PQ/0OPQ
> etc...

v

@

) » k-means
TU » PQ/OPQ

O » Graph traversal
i > etc...

c .‘
09 . "‘-‘_\.‘.‘7

~ For raw data: Acc. ©, Memory: ® =

() . . .
r— Locality Sensitive Hashing (LSH)
O

wn

I

g Tree / Space Partitioning

Graph traversal

~ For compressed data: Acc. ®, Memory: ©

Look-up-based

0.34

0.22 » ID: 2
0.68 ID: 123
0.71

J

Hamming-based
0.34

0.22
0.68
0.71

® ® =] ®

}
}

Linear-scan by
Asymmetric Distance

Linear-scan by
Hamming distance

FLANN: Fast Library for Approximate Nearest Neighbors

Images are from [Muja and Lowe, TPAMI 2014]

Randomized KD Tree k-means Tree

» Automatically select “Randomized KD Tree” or “k-means Tree”
https://github.com/mariusmuja/flann

© Good code base. Implemented in OpenCV and PCL

© Very popular in the late 00's and early 10’s

@® Large memory consumption. The original data need to be stored
@ Not actively maintained now

42

https://github.com/mariusmuja/flann

All images are cited from the author’s blog post (https://erikbern.com/2015/10/01/nearest-

neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html)
Annoy ghb d t dels-part-2-how-t h-in-high-d I-sp html
“2-means tree”+ “multiple-trees” + “shared priority queue”

Select two points randomly Divide up the space Repeat hierarchically

» Focus the cell that the query lives
» Compare the distances

I Can traverse the tree by log-times comparisons 43

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

All images are cited from the author’s blog post (https://erikbern.com/2015/10/01/nearest-

neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html)
Annoy ghb d t dels-part-2-how-t h-in-high-d I-sp html
“2-means tree”+ “multiple-trees” + “shared priority queue”

If we need more data points, use a priority queue

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

A n n Oy 1 spotify / annoy QUsedby~ Tk | ©uUmwstch~ 332 Wunstar | Tk | % Fork | 778
nsig

<> Code (1) lssues 21 Pull requests 3 Actions Projects 0 Wiki ecuri

https://github.com/erikbern/annoy | - N
. . Approximate Nearest Neighbors in C++/Python optimized for memory usage and load
$ > p 1 p 1 n S t a 1 1 a n n Oy c-plus-plus pythen nearest-neighbor-search locality-sensitive-hashing approximate-nearest-ne

-0~ 745 commits ¥ 19 branches D 0 packages O 23 release: &[5 Apache-2.0

G Conoue

t = An n Oy I n d e X (D) Branch: master = New pull request Create new file | Upload files = Find file

-FO P n) X i n e n u m e r‘ a t e (X) : I ericbern Update README st + Latest commit 8b6a825 on 12 May
| annoy remove subclass 3 years ago

L4
t [a d d_l t e m (n J X) | debian removed boost from debian/control and .travis.yml 5 years ago
t ° b u i l d (n_t r‘e e S) I examples fix another futurewarning 11 months ago

W s A more informative error for #423 last month

B test Fix misc minor compilation warnings 3 months ago

[.gitignore Improve .gitignore coverage of files created by tests & months ago
t.get _nns_by vector(q, topk)

travis.yml unrelated os x failure, try bumping python versoin 6 months ago

[LICENSE added Apache license 7 years ago

© Developed at Spotify. Well-maintained. Stable

© Simple interface with only a few parameters

© Baseline for million-scale data

© Support mmap, i.e., can be accessed from several processes
@ Large memory consumption

@ Runtime itself is slower than HNSW ie

https://github.com/erikbern/annoy

10°

10°

Space partition

— Inverted index + data compression

Data compression

» Raw data
» Scalar quantization
» PQ/0OPQ
> etc...

v

@

) » k-means
TG > PQ/OPQ

O » Graph traversal
i > etc...

c :
09 . "‘-‘_\.‘.‘7
=

~ For raw data: Acc. ©, Memory: ® =

() . . :
r— Locality Sensitive Hashing (LSH)
O

W

I

g Tree / Space Partitioning

Graph traversal

~ For compressed data: Acc. ®, Memory: ©

Look-up-based

0.34

0.22 » ID: 2
0.68 ID: 123
0.71

J

Hamming-based
0.34

0.22
0.68
0.71

® ® =] ®

}
}

Linear-scan by
Asymmetric Distance

Linear-scan by
Hamming distance

Graph traversal
» Very popular in recent years

» Around 2017, it turned out that the graph-traversal-based
methods work well for million-scale data

> Pioneer:

v Navigable Small World Graphs (NSW)
v’ Hierarchical NSW (HNSW)

» Implementation: nmslib, hnsw, faiss

*{Yolo]gs @ 'mages are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

48

*{Yolo]gs @ 'mages are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
49

*{Yolo]gs @ 'mages are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
50

*{Yolo]gs @ 'mages are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
51

*{Yolo]gs @ 'mages are from [Malkov+, Information Systems, 2013]

» Early links can be long

» Such long links encourage a large hop,
making the fast convergence for search

Graph of E
xl, ...,xgo

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
52

m Images are from [Malkov+, Information Systems, 2013]

53

m Images are from [Malkov+, Information Systems, 2013]

» Given a query vector
» Start from a random point

entry point

55

m Images are from [Malkov+, Information Systems, 2013]

entry point

» Given a query vector
» Start from a random point
» From the connected nodes, find the closest one to the query

56

m Images are from [Malkov+, Information Systems, 2013]

entry point

» Given a query vector
» Start from a random point
» From the connected nodes, find the closest one to the query

57

m Images are from [Malkov+, Information Systems, 2013]

entry point

» Given a query vector
» Start from a random point

» From the connected nodes, find the closest one to the query
» Traverse in a greedy manner

58

m Images are from [Malkov+, Information Systems, 2013]

entry point

» Given a query vector
» Start from a random point

» From the connected nodes, find the closest one to the query
» Traverse in a greedy manner

59

Extension: Hierarchical NSW; HNSW

» Construct the graph hierarchically malkov and Yashunin, TPaMI, 2019]
» This structure works pretty well for real-world data

Layer=2
\ 4 Search on a coarse graph
Move to the same node on a
finer graph

4 Repeat
\/

[Malkov and Yashunin, TPAMI, 2019]

Decreasing characteristic radius

NMSLIB (Non-Metric Space Library) .

https://github.com/nmslib/nmslib

$> pip install nmslib S e
index = nmslib.init(method=‘hnsw’) -
index.addDataPointBatch(X) S
index.createIndex(paramsl) B
index.setQueryTimeParams (params2) R

index.knnQuery(q, topk)

© The “hnsw” is the best method as of 2020 for million-scale data
© Simple interface

© If memory consumption is not the problem, try this

® Large memory consumption

@ Data addition is not fast
61

https://github.com/nmslib/nmslib

Other implementations of HNSW

Hnswlib: https://github.com/nmslib/hnswlib

» Spin-off library from nmslib

» Include only hnsw

» Simpler; may be useful if you want to extend hnsw

Faiss: https://github.com/facebookresearch/faiss
» Libraries for PQ-based methods. Will Introduce later
» This lib also includes hnsw

62

https://github.com/nmslib/nmslib
https://github.com/facebookresearch/faiss

Other graph-based approaches

» From Alibaba:

C. Fu et al., “Fast Approximate Nearest Neighbor Search with the Navigating Spreading-out
Graph”, VLDB19

https://github.com/ZJULearning/nsg

» From Microsoft Research Asia. Used inside Bing:

J. Wang and S. Lin, “Query-Driven Iterated Neighborhood Graph Search for Large Scale
Indexing”, ACMMM12 (This seems the backbone paper)
https://github.com/microsoft/SPTAG

» From Yahoo Japan. Competing with NMSLIB for the 1%t place of benchmark:

M. lwasaki and D. Miyazaki, “Optimization of Indexing Based on k-Nearest Neighbor Graph for
Proximity Search in High-dimensional Data”, arXiv18

https://github.com/yahoojapan/NGT

63

https://github.com/ZJULearning/nsg
https://github.com/microsoft/SPTAG
https://github.com/yahoojapan/NGT

Reference

» The original paper of Navigable Small World Graph: Y. Malkov et al., “Approximate
Nearest Neighbor Algorithm based on Navigable Small World Graphs,” Information
Systems 2013

» The original paper of Hierarchical Navigable Small World Graph: Y. Malkov and D.
Yashunin, “Efficient and Robust Approximate Nearest Neighbor search using Hierarchical
Navigable Small World Graphs,” IEEE TPAMI 2019

10°

10°

billion-scale

million-scale

Space partition

» k-means

» PQ/OPQ

» Graph traversal
> etc...

— Inverted index + data compression

Data compression

» Raw data

» Scalar quantization
» PQ/0OPQ

> etc...

v

v

LT[1]

»
.

~ For raw data: Acc. ©, Memory: ® =—

Locality Sensitive Hashing (LSH)

Tree / Space Partitioning

Graph traversal

~ For compressed data: Acc. ®, Memory: © ']

0.34
ID: 123
0.71
J
0.22

Look-up-based
0.22

0.68
Hamming-based
0.34

0.68 »

0.71

® ® =] ®

}
}

Linear-scan by
Asymmetric Distance

Linear-scan by
Hamming distance

Basic idea

MO0

2.35
D 0.82

0
O
Q.
™

A[0.54] |

ylo.a2] 1.

3.34

0.83
0.62

11.45.

‘apoa‘ @

» Need 4ND byte to represent N real-valued vectors
using floats

» If N or D is too large, we cannot read the data on memory
v’ E.g.,512GBforD = 128,N = 10°

» Convert each vector to a short-code

» Short-code is designed as memory-efficient
v' E.g., 4 GB for the above example, with 32-bit code

> Run search for short-codes

66

D

0.54]]

2.35
0.82

10.421 L1.

0
o
Q.
™

Basic idea

2)

‘apoa‘ @

3.34

0.83

10.62
1.45

> Need AND hute to renrecent N real-valiied vectaore

What kind of conversion is preferred?

1. The “distance” between two codes can be
calculated (e.g., Hamming-distance)

2. The distance can be computed quickly
3. That distance approximates the distance

between the original vectors (e.g., L,)

the above three criteria

4. Sufficiently small length of codes can achieve

67

B \
» Convert x to a B-bit binary vector: :

f(x) = b € {0,1)" _—

» Hamming distance
dy(by,by) = |by @ by| ~ d(xq, x;) |
» A lot of methods: jjj

v’ J. Wang et al., “Learning to Hash for Indexing Big Data - A
Survey”, Proc. IEEE 2015

v). Wang et al., “A Survey on Learning to Hash”, TPAMI 2018

pressed data: Acc. ®, Memory: ©

-up-based

ID: 2 Linear-scan by
\ lg,sﬂ e Asymmetric Distance
Tree / Space Partitioning i
amming-base
_ 0'68

» Not the main scope of this tutorial;
PQ IS Usua”y more accurate
Ui j Linear-scan by
0o » . ‘ Hamming distance
0.71 :

Graph traversal

10°

10°

billion-scale

million-scale

Space partition

» k-means

» PQ/OPQ

» Graph traversal
> etc...

— Inverted index + data compression

Data compression

» Raw data

» Scalar quantization
» PQ/0OPQ

> etc...

v

v

LT[1]

»
.

~ For raw data: Acc. ©, Memory: ® =—

Locality Sensitive Hashing (LSH)

Tree / Space Partitioning

Graph traversal

Look-up-based
0.34
0.22 » ID: 2
0.68 ID: 123
Lot)
Hamming-based
0.34
0.22 »
0.68
0.71

® ® =] ®

}
}

~ For compressed data: Acc. ®, Memory: © ']

Linear-scan by
Asymmetric Distance

Linear-scan by
Hamming distance

Product Quantization; PQ pégou, Trami 2011
» Split a vector into sub-vectors, and quantize each sub-vector

A

vector; x

r0.347
0.22
0.68
1.02
0.03

L0.71-

ID: 1
0.13
0.98
ID: 1
0.3
1.28

|

Codebook

ID: 2 ID: 256
032] ... l1.03
0.27 0.08
ID: 2 ID: 256
0.35] . l0.99]
0.12 1.13

Trained beforehand by
k-means on training data

70

Product Quantization; PQ pégou, Trami 2011
» Split a vector into sub-vectors, and quantize each sub-vector

A

vector; x

0.34°
0.22
0.68
1.02
0.03

L0.71-

ID: 1
0.13
0.98
ID: 1
0.3
1.28

|

Codebook

ID: 2 ID: 256
032] ... l1.03
0.27 0.08
ID: 2 ID: 256
0.35] . l0.99]
0.12 1.13

Trained beforehand by
k-means on training data

71

Product Quantization; PQ pégou, Trami 2011
» Split a vector into sub-vectors, and quantize each sub-vector

A

vector; x

0.34°
0.22
0.68
1.02
0.03

L0.71-

} -

Codebook

-y,

D:1 (p:2 1
0.131170.327;
0.981l0.271!

ID: 1 ID: 2
0.3] 0.35]
1.281 10.12

|

D: 256
1.031

0.08

D: 256
0.99]

1.13

——{p.2 |4

Trained beforehand by
k-means on training data

PQ-code; x

72

Product Quantization; PQ pégou, Trami 2011

» Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data

vector; x Codebook
] 1 D:1 (1D:2 1 ID: 256 i .=
1 0.34 } - | [0:13 :6%%: l1.03 | PQ-code; X
|
ez e B PR
0.63 0.3 1 [0.35 ; | 10.99 D:123 || M
D 1.02 = 1154] o712 Il 113 T
0.03 v
v L0.71-

Product Quantization; PQ pégou, Trami 2011

» Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

vector; x i Codebook k-means on training data
(BB} = [- o P
U
D 1.02 } = 1-?8] 0:12] U l1:13] +1D: 123 M
0.03 :r'i ID: 87 ||
v L0.71- L] J

Product Quantization; PQ pégou, Trami 2011

» Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

vector: x i Codebook k-means on training data

Ar 1 ID: 1 {--;-\l ID: 256) L=
Uen - | [0.13 110,321, v [103]. PQ-code; x
0.22 0.98]1l0.271! 0.08 \iID- > A
0.68 ID:1 ID:2 :'": ID: 256 . M

: 0.3 7 [0.35 0.99 _
D 1.02 } = 1-28] 0.12] J:_E 1.13] 31D: 123

0.03 :‘"’: ID: 87 ||

v L0.71- :_E

» Simple

Bar notation for PQ-code in this tutorial:

» Memory efficient X€RP » Xe(l,..,2561M
» Distance can be esimated -

Product Quantization: Memory efficient

A

vector; x

0.34°
0.22
0.68
1.02
0.03

L0.71-

}
}

-

-

Codebook

D:1 (1D:2 1 ID: 256) L

0.131170.32]} ... l1_03 | PQ-code; x

0981027} " lo.osl T—— [5|4

ID:1 ID:2 If"’: ID: 256 :

0.37710.35] 4,, (099 .

1.28] 0_12]) 1_13] >+1D: 123
i [ID: 87 ||

-
—

76

Product Quantization: Memory efficient

vector; x

0.34°
0.22
0.68
1.02
0.03

A

D

float: 32bit V

e.g., D =128

Codebook
D:1 (1D:2 1 ID: 256 _ L
0131703270 103). PQ-code; x
0.981l0271} —~ lo.os8! [T—y |5
ID:1 ID:2 If'": ID: 256 :
0.37[035] 4, [099 .
1.28] 0_12] : } 1_13])ID 123

o | ID: 87

128 x 32 = 4096 [bit]

-
—

Product Quantization: Memory efficient

vector; x Codebook
Ar 1 ID: 1 {--;-\l ID: 256) L=
0.34 } - | [0:13 :6[.)3§ L 103). PQ-code; X
I

0.22 (I)[.)?zla LQ-;Z, - .ﬁiozi \iID: 5> |4

0.68 0.3 1 0.35 ; | 10.99 19 M
D 1.02 = ([, 58] lo72] :"E 193] 1D: 123

| T [D: 87
0.03 :f' i A \ 4
float: 32bit V \ | J uchar: 8bit

eg., D =128

128 X 32 = 4096 [bit]

eg., M =8
8 X 8 = 64 [bit]

78

vector; x

1034 _,
0.22 }

0.68
D 1.02
0.03

float: 32bit V

eg., D =128

Product Quantization: Memory efficient

|

Codebook
D:1 (1p:2 1 ID: 256
0.13]:l0.32 | . l1.o3 _
0.981110.271} 0.08
ID:1 ID:2 1 ID: 256
0.3] 0.35] 5 0.99]
1.28l lo.12l 1 11113
r—

N\

——{p.2 |4

PQ-code; x

128 X 32 = 4096 [bit]

M

>1D: 123
(ID:87) ||

uchar: 8bit

/9

Product Quantization: Distance estimation
Database vectors

Query; g € RP
0.34
0.22
0.68
1.02
0.03
0.71

X1
0.54
2.35
0.82
0.42
0.14
0.32

X2
0.62
0.31
0.34
1.63
1.43
0.74

XN
3.34
0.83
0.62
1.45
0.12
2.32

Product Quantization: Distance estimation
Database vectors

Query; g € RP
0.34
0.22
0.68
1.02
0.03
0.71

X, X,
0.547 10.62
2.35(10.31
0.82](0.34
0.42]|1.63
0.14]11.43
0.321 1L0.74

Product
guantization

XN
3.34
0.83
0.62
1.45
0.12
2.32

31

Product Quantization: Distance estimation

Query; g € RP
0.34
0.22
0.68
1.02
0.03
0.71

BT

ID: 99

X1 X2
ID: 42 ID: 221
ID: 67 ID: 143
ID: 92 ID: 34

ID: 234

ID: 3

32

Product Quantization: Distance estimation

Query; q € R m
0.34

0.22 a2 . N

ID: 42 ID: 221 ID: 99
0.68 ID: 67 | |ID:143 | -+ |ID:234
1.02 ID:92 | |ID: 34 ID: 3
0.03

0.71

> d(qg, x)? can be efficiently approximated by d (g, x)?
» Lookup-trick: Looking up pre-computed distance-tables
» Linear-scan by d,

import numpy as np NOt pSGUdO COdeS

from scipy.cluster.vqg import vqg, kmeans?Z
from scipy.spatial.distance import cdist

def train(vec, M): def search(codeword, pgcode, query):
Ds = int (vec.shape[l] / M) # Ds =D / M M, _K, Ds = codeword.shape
codeword[m] [k] = c' # dist_table = D(m,k)
codeword = np.empty ((M, 256, Ds), np.float32) dist_table = np.empty ((M, 256), np.float32)
for m in range (M) : for m in range (M) :
vec_sub = vec[:, m # Ds : (m + 1) = Ds] query_sub = query[m = Ds: (m + 1) = Ds]
[

codeword[m], label = kmeans?2 (vec_sub, 256) dist_table[m, :] = cdist([query_sub],

— codeword[m], ’sgeuclidean’)[0] # Egq. (5)

return codeword
Eq. (6)

N dist = np.sum(dist_table[range (M), pgcode], axis=1)

def encode (codeword, vec): # vec = {xn.hzl

M, _K, Ds = codeword.shape
pgcode[n] = i(x,), pgcode[n][m] = i"(Xn)
pacode = np.empty ((vec.shape[0], M), np.uint8)

return dist

if _ name_ == "_ main_ ":
for m in range(M): # Egq. (2) and Eq. (3) # Read vec_train, vec ({xn})_;), and query (y)
vec_sub = vec[:, m » Ds: (m + 1) =* Ds] M= 4
pgcode[:, m], dist = vg(vec_sub, codeword[m]) codeword = train(vec_train, M)
pagcode = encode (codeword, vec)
return pgcode dist = search(codeword, pgcode, query)

print (dist)

» Only tens of lines in Python
» Pure Python library: nanopq https://github.com/matsui528/nanopq
» pip install nanopg

34

https://github.com/matsui528/nanopq

Deep PQ

» Supervised search (unlike the original PQ)
» Base-CNN + PQ-like-layer + Some-loss
» Need class information

CNN

» T.Yuetal.,, “Product Quantization Network for Fast
Image Retrieval”, ECCV 18, 1JCV20

1 share
| Weights
v

! Share
Weights
A4

I—— il
1 Bl

CNN [—

» L. Yuetal., “Generative Adversarial Product
Quantisation”, ACMMM 18

» B.Klein et al., “End-to-End Supervised Product

Quantization for Image Search and Retrieval”, CVPR 19

Asymmetric
SPQ 1 ’ *| Triplet Loss
t share
Weights
SPQ i

From T. Yu et al., “Product Quantization Network for Fast Image Retrieval”, ECCV 18

85

More extensive survey for PQ

Pre-rotation
- Rotate the space

Original paper
[Jégou+, TPAMI 11]

PQ encoding

Search system with
inverted indexing

Cartesian k-means
[Norouzi+, CVPR 13]

Optimized PQ
[Ge+, TPAMI 14]

~— Several assignment strategies =m———

- Combination - Sparse coding

Improvement of

Related topics

Optimized Ck-means Sparse PQ
[Wang+, TKDE 15] [Ning+, TMM 17]

PQ-encoding

- Assignment tree

Tree quantization
[Babenko+, CVPR 15]

Hierarchical ==

CompQ
[0zan+, TKDE 16]

Qa-RVQ/PQ
[Jain+, ECCV 16]

Generalization
- The sum of D-dim vectors
Additive quantization

[Babenko+, CVPR 14]
[Martinez+, ECCV 16]

|

Coarse-quantization:
k-means

Distance-estimation:
PQ-code for a residual

Improvement of distance-estimation

Improvement of search system
with inverted indexing

[Martinez+, ECCV 18]

s Novel problem settings §

Fast encoding
[Zhang+, CVPR 15]

~ Supervised Deep PQ
with the model training

[Yu+, ECCV 18]
[Yu+, ACMMM 18]

Supervised
[Wang+, CVPR 16] >
[Eghbali+, CVPR 19]

[Klein+, CVPR 19]

Multiple k-means
[Xia+, ICCV 13]
PQ
[Babenko+, CVPR 12]

Fast enumeration
[lwamura+, ICCV 13
w/o distance-estimation
[Matsui+, ICCV 15]

Hierarchical

[Babenkol+, CVPR 16]
.

7 Improvement of coarse-quantization ~

Multi-modal
L [Zhang, CVPR 16] y

OPQ + local codebook
[Babenko+, TPAMI 15]

HNSW

[Douze+, CVPR 18]
[Baranchuk+, ECCV 18]

J/

~Hardware-based acceleration=y

GPU
[Wieschollek+, CVPR 16]
[Johnson+, TBD 20]

SIMD
[André+, VLDB 15]
[André+, ICMR 17]
[Blalock, KDD 17]
[André+, TPAMI 20]

FPGA
[Zhang+, CVPR 18]

. J

— |Image search with PQ =

[Jégou, CVPR 10]
[Spyromitros-Xious+, TMM 14]
[Li+, TMM 17]

~ Additional bit management ==

Distance-encoded
[Heo+, CVPR 14]

— Applications using PQ

CNN quantization
[Bagherinezhad+, CVPR 17]
[Wu+, CVPR 16]

Clustering
[Matsui+, ACMMM 17]

Sparse coding
[Ge+, CVPR 14]

PCA-tree
[Babenko+, CVPR 17]

Search for a subset
[Matsui+, ACMMM 18]

\

~ Connection to binary hashing

Polysemous codes
[Douze+, ECCV 16]

k-means hashing
[He+, CVPR 13]

Distance table

[Wang+, ACMMM 14]

> https://github.com/facebookresearch/faiss/wiki#tresearch-foundations-of-faiss

> http://yusukematsui.me/project/survey pqg/survey pg jp.html

» Y. Matsui, Y. Uchida, H. Jégou, S. Satoh “A Survey of Product Quantization”, ITE 2018.

http://yusukematsui.me/project/survey_pq/survey_pq_jp.html
http://yusukematsui.me/project/survey_pq/survey_pq_jp.html

Hamming-based vs Look-up-based

Hamming-based

10.347
0.22
0.68 »
1.02

0.03
L0.71-

|l |lr|O|RrRr |

Look-up-based

10.341
0.22 ID: 2
0.68 » _
02 ID: 123
0.03 ID: 87
0.71.

Representation

Binary code : {0,1}?

PQ code : {1,...,256}"

Distance Hamming distance Asymmetric distance
Approximation |© ©O

Runtime ©O ©

Pros No auxiliary structure Can reconstruct the original vector

Cons

Cannot reconstruct the original vector

Require an auxiliary structure (codebook)

10°

10°

billion-scale

million-scale

Space partition

» k-means

» PQ/OPQ

» Graph traversal
> etc...

~— Inverted index + data compression

Data compression

» Raw data

» Scalar quantization
» PQ/0OPQ

> etc...

v

v

LT[1]

»
.

~ For raw data: Acc. ©, Memory: ® =—

Locality Sensitive Hashing (LSH)

Tree / Space Partitioning

Graph traversal

~ For compressed data: Acc. ®, Memory: © ']

0.34
ID: 123
0.71
J
0.22

Look-up-based
0.22

0.68
Hamming-based
0.34

0.68 »

0.71

® ® =] ®

}
}

Linear-scan by
Asymmetric Distance

Linear-scan by
Hamming distance

Inverted index + PQ: Recap the notation

1 10.347 PQ code

0.22 _ A
Product quantization ID: 2

0.68
D102) M
0.03 ID: 87 v Bar-notation =
v LO.71- PQ-code

x € RP xe{l,..,256M

> Suppose q,x € RP?, where x is quantized to x
> d(qg,x)? can be efficiently approximated by x:

d(‘l; x)z ~ dA(q; f)z

Just by a PQ-code.

Not the original vector 39

Inverted index + PQ: Record

k=1

k =2
Coarse quantizer

k=K

_—\

Prepare a coarse quantizer
v’ Split the space into K sub-spaces

v {ck}’,§=1 are created by running k-means on training data

Inverted index + PQ: Record

Record x4

Coarse quantizer

Inverted index + PQ: Record

Record x4

Coarse quantizer

92

Inverted index + PQ: Record

Record x4
k=1
k =2
Coarse quantizer
k=K

» €, is closest to x;
» Compute a residual ; between x; and c¢,:
1'1 —_ xl — CZ (——)

93

Inverted index + PQ: Record

Coarse quantizer

Record x;

k =

K

» €, is closest to x;
» Compute a residual ; between x; and c¢,:
1'1 —_ xl — CZ (——)

» Quantize r, to 1, by PQ
» Record it with the ID, “1”
> i.e., record (i,7;)

D4

Inverted index + PQ: Record

» For all database vectors, record [ID + PQ(res)] as pointing lists
— () (0 ()

k =2 ID: 42 | | ID: 18
ID:37 || ID:4
ID:9 || ID:96

coarse quantizer

Inverted index + PQ: Search

coarse quantizer

ID: 42 ID: 18
ID: 37 ID: 4
ID: 9 ID: 96

96

Inverted index + PQ: Search

Find the nearest vector to cu - () ()

0.54] R
2.35

0.82 @ @

0.42 k =2 ID: 42 | | ID: 18

0.14 ID:37 | | ID:4

'032‘ ID:9 | | ID: 96

coarse quantizer

Inverted index + PQ: Search

Find the nearest vector to cu - () ()

0.54] e
2.35

0.82 @ @

0.42 k =2 ID: 42 | | ID: 18

0.14 ID:37 | | ID:4

'032‘ ID:9 | | ID: 96

coarse quantizer

Inverted index + PQ: Search

Find the nearest vector to Lu

10.547
2.35
0.82
0.42
0.14

L0.32-

coarse quantizer

» C, is the closest to q
» Compute the residual: v, = q — ¢,

=~
1
=

ID: 42 ID: 18
ID: 37 ID: 4
ID: 9 ID: 96

99

Inverted index + PQ: Search

Find the nearest vector to cu - () ()

10.547
2.35
0.82
0.42
0.14

L0.32-

coarse quantizer : /\

» Forall (i,7;) ink = 2, compare r; with r:

» C, is the closest to q d(q,x;)* = d(q — ¢z, x; — ¢3)? ,
» Compute the residual: v, = q — ¢, = d(rq,rl-)z ~ dA(rq’Fi)

» Find the smallest one (several strategies)

[]
I facebookresearch / faiss @Usedby~ 136 OUnwatch~ | 399 A Unstar | 10k % Fork | 1.8k
a I S S <> Code Issues 45 Pull requests 8 Actions Projects 5 Wiki Security 0 Insights

https://github.com/facebookresearch/faiss
$> conda install faiss-cpu -c pytorch =
$> conda install faiss-gpu -c pytorch -

example_makefiles

»From the original authors of the PQ and a GPU expert, FAIR
» CPU-version: all PQ-based methods
» GPU-version: some PQ-based methods
»Bonus:
» NN (not ANN) is also implemented, and quite fast
»k-means (CPU/GPU). Fast.

Benchmark of k-means:
https://github.com/DwangoMediaVillage/pgkmeans/blob/master/tutorial/4 comparison to faiss.ipynb 101

https://github.com/facebookresearch/faiss
https://github.com/DwangoMediaVillage/pqkmeans/blob/master/tutorial/4_comparison_to_faiss.ipynb

index

index
index
index
dist,

k - 1 ID: 42 ID: 25 ID: 38 ID: 16
ID: 37 ID: 47 ID: 49 ID: 72
ID: 9 ID: 32 ID: 72 ID: 95

coarse quantizer

/ Simple linear scan

quantizer = faiss.IndexFlatL2(D)

= faiss.IndexIVFPQ(quantizer, D, nlist, M, nbits)

|
.train(Xt)

.add(X)
.nprobe = nprobe
ids = index.search(Q, topk)

Usually, 8 bit

102

~— Inverted index + data compression

Space partition Data compression

|
|
L » k-means : » Raw data
= » PQ/0OPQ ! » Scalar quantization
O » Graph traversal ! » PQ/OPQ
it > etc... | > etc...
c . :
O — L[[[[]
— = — [T 1 1]
o) o :
I
|

~ For compressed data: Acc. ®, Memory: ©

Look-up-based

~ For raw data: Acc. ©, Memory: ® =—

Locality Sensitive Hashing (LSH)

10°

million-scale

Tree / Space Partitioning

Graph traversal

J

0.34
0.22
0.68
0.71

=

® ® =] ®

Hamming-based

}

0.34 _
0.22 » ID: 2 Linear-scan by
8-?? ID: 123 Asymmetric Distance

Linear-scan by
Hamming distance

10.547
2.35
0.82
0.42
0.14

L0.32-

Coarse quantizer

104

10.547
2.35
0.82
0.42
0.14

L0.32-

| Coarse quantizer

d

quantizer = faiss.IndexHNSWFlat(D, hnsw¥m)

index = faiss.IndexIVFPQ(quantizer, D, nlist, M, nbits)

Select a coarse quantizer Usually, 8 bit

»Switch a coarse quantizer from linear-scan to HNSW
»The best approach for billion-scale data as of 2020
»The backbone of [Douze+, CVPR 2018] [Baranchuk+, ECCV 2018] o-

© From the original authors of PQ. Extremely efficient (theory & impl)
© Used in a real-world product (Mercari, etc)

© For billion-scale data, Faiss is the best option

© Especially, large-batch-search is fast; #tquery is large

® Lack of documentation (especially, python binding)
@ Hard for a novice user to select a suitable algorithm
@ As of 2020, anaconda is required. Pip is not supported officially

106

Reference
» Faiss wiki: [https://github.com/facebookresearch/faiss/wiki]

» Faiss tips: [https://github.com/matsui528/faiss_tips]

» Julia implementation of lookup-based methods [https://github.com/una-dinosauria/Rayuela.jl]

» PQ paper: H. Jégou et al., “Product quantization for nearest neighbor search,” TPAMI 2011

» IVFADC + HNSW (1): M. Douze et al., “Link and code: Fast indexing with graphs and compact
regression codes,” CVPR 2018

» IVFADC + NHSW (2): D. Baranchuk et al., “Revisiting the Inverted Indices for Billion-Scale
Approximate Nearest Neighbors,” ECCV 2018

107

https://github.com/facebookresearch/faiss/wiki
https://github.com/matsui528/faiss_tips
https://github.com/una-dinosauria/Rayuela.jl

cheat-sheet for ANN in Python (as of 2020. Can be installed by conda or pip)

: Exact nearest neighbor search - : If out of GPU-memory, make M smaller :
Jaih L P TS t‘l llllllllllllllllllll = IfoutofGPU memory ‘lllllllllllllllllllllllllll.‘ lllllllllllllllllllll L]

‘ Yes faiss-gpu: linear scan (GpulndexFlatL2) faiss-gpu: ivfpqg (GpulndexIVFPQ)
If topk > 2048 /
| Have GPU(s)? | faiss-cpu: linear scan (IndexFlatL2) gl U €1 SR HMETET, €

No Need more accurate results

Require fast data addition

If slow... ‘

About: 103 < N < 106 _

Would like to run
subset-search

pessssssssssssssssssanssnns e Sfe{aaTa ol If slow, or out Would like to run from
. e . el . several processes
= Alternative: faiss.IndexHNSWFlat in faiss-cpu : of memory

» Same algorithm in different libraries
.. - Would like to adjust

the performance Adjust the IVF parameters:
Make nprobe larger = Higher accuracy but slower
Would like to adjust
the performance
Adjust the PQ parameters: Make M smlaller

Note: Assuming D = 100. The size of the problem is determined by DN. If 100 <« D, run PCA to reduce D to 100

faiss-cpu: hnsw + ivfpq

(IndexHNSWFlat + IndexIVFPQ)

If out of memory

Benchmark 1: ann-benchmarks
» https://github.com/erikbern/ann-benchmarks
» Comprehensive and thorough benchmarks

for various libraries. Docker-based

Recall-Queries per second (1/s) tradeoff - up and to the right is better

10°]

1_04 i

103 1 =

Queries per second (1/s)

1_02 i

1_01 i

» Top right, the better
» As of June, 2020, NMSLIB and NGT are

competing each other for the first place

\

S

= annoy

=4« BallTree(nmslib)

== pruteforce-blas
faiss-ivf
flann
hnswifaiss)
hnsw{nmslib)

hnswlib
kd

Sk, kgraph
\ mrpt
o

X NGT-onn
Y 9

-l\ | NGT-panng
’ == pynndescent
shidx
1t SW-graph{nmslib)

T T T T
0.0 0.2 0.4 0.6 0.8
Recall

e 109

https://github.com/erikbern/ann-benchmarks

Benchmark 2: annbench

> https://github.com/matsui528/annbench
» Lightweight, easy-to-use

Install libraries
pip install -r requirements.txt

Download dataset on ./dataset
python download.py dataset=siftsmall

Evaluate algos. Results are on ./output
python run.py dataset=siftsmall algo=annoy

Visualize
python plot.py

query/sec (1/s)

10°

=
o
r

107

siftlm

arch_k:100.. ch k-200 -
= arch_k:400
arch_k:800

—8— annoy(n_trees=200)

—&— annoy(n_trees=400)

—8— hnsw(M=4, ef construction=100})
—8— hnsw(M=32, ef construction=200)
—&— ivfpq(M=8, nlist=1000)

—o— ivfpg(M=16, nlist=1000)

—o— linear()

164

f:25(6

dummy:0

[

Multi-run by Hydra

python run.py --multirun dataset=siftsmall,siftlm algo=linear,annoy,ivqu,hnsw]

T
0.2

T
0.4

recall@l

T
0.6

T T
0.8 1.0

110

https://github.com/matsui528/annbench

Search for a “subset”

— (1) Tag-based search: Target IDs:

tag == “zebra” (125, 223, 365, ...]

_
[(2) Image search with a query q]

) 2

ll

= I Search E Ranked list dist ID :
T> ANN system | me—— 13 365 :
126 “elephant” Query vector 0.24 223
125 223, 3695, . 881 :
: TargetIDs :

Subset-search

Y. Matsui+, “Reconfigurable Inverted Index”, ACMMM 18 111

Trillion-scale search: N = 104 (1T)

Sense of scale
> K(= 103) Just in a second on a local machine
> M(= 10°) All data can be on memory. Try several approaches

> G(= 10°) Need to compress data by PQ. Only two datasets are available (SIFT1B, Deep1B)
> T(= 10'?) Cannot even imagine

https://github.com/facebookresearch/faiss/wiki/Indexing-1T-vectors
https://github.com/facebookresearch/faiss/
wiki/Indexing-1T-vectors
» Only in Faiss wiki @\
» Distributed, mmap, etc.

_ FALSS
> L :“L\(L@x ¢ odd

\ J Ao
|
IHENE

0% > >
- 201 15T

A sparse matrix of 15 Exa elements?

112

https://github.com/facebookresearch/faiss/wiki/Indexing-1T-vectors

Nearest neighbor search engine: something like ANN + SQL

» The algorithm inside is faiss, nmslib, or NGT

&) VEARCH $7Y Open st et

https://github.com/vearch/vearch Elasticsearch KNN

https://github.com/opendistro-for-elasticsearch/k-NN

"ﬂi“‘ Vald

https://github.com/vdaas/vald

Milvus

https://github.com/milvus-io/milvus

113

https://github.com/vearch/vearch
https://github.com/milvus-io/milvus
https://github.com/opendistro-for-elasticsearch/k-NN
https://github.com/vdaas/vald

Problems of ANN

» No mathematical background.
v" Only actual measurements matter: recall and runtime
v" The ANN problem was mathematically defined 10+ years ago (LSH), but recently no
one cares the definition.

» Thus, when the score is high, it’s not clear the reason:
v" The method is good?
v' The implementation is good?
v Just happens to work well for the target dataset?
v E.g.: The difference of math library (OpenBLAS vs Intel MKL) matters.

» |If one can explain “why this approach works good for this dataset”, it would be a great
contribution to the field.

» Not enough dataset. Currently, only two datasets are available for billion-scale data:
SIFT1B and Deep1B

cheat-sheet for ANN in Python (as of 2020. Can be installed by conda or pip)

: Exact nearest neighbor search - : If out of GPU-memory, make M smaller :
Jaih L P TS t‘l llllllllllllllllllll = IfoutofGPU memory ‘lllllllllllllllllllllllllll.‘ lllllllllllllllllllll L]

‘ Yes faiss-gpu: linear scan (GpulndexFlatL2) faiss-gpu: ivfpqg (GpulndexIVFPQ)
If topk > 2048 /
| Have GPU(s)? | faiss-cpu: linear scan (IndexFlatL2) gl U €1 SR HMETET, €

No Need more accurate results

Require fast data addition

If slow... ‘

About: 103 < N < 106 _

Would like to run
subset-search

pessssssssssssssssssanssnns e Sfe{aaTa ol If slow, or out Would like to run from
. e . el . several processes
= Alternative: faiss.IndexHNSWFlat in faiss-cpu : of memory

» Same algorithm in different libraries
.. - Would like to adjust

the performance Adjust the IVF parameters:
Make nprobe larger = Higher accuracy but slower
Would like to adjust
the performance
Adjust the PQ parameters: Make M smlaller

Note: Assuming D = 100. The size of the problem is determined by DN. If 100 <« D, run PCA to reduce D to 100

faiss-cpu: hnsw + ivfpq

(IndexHNSWFlat + IndexIVFPQ)

If out of memory

