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Nearest Neighbor Search; NN

_ )
X1, X5, e, XN
— _
x, € RP

>N D-dim database vectors: {x,}}_,



Nearest Neighbor Search; NN

Result
0.23
15| e (D L (328
argmin Hq Xnll3
0.65 X1, X2, e, XN ne{l 2,..,N} 0.72
11.43 N - 1. 68
q € RP x, € RP

>N D-dim database vectors: {x,, }_,
»Given a query ¢, find the closest vector from the database
»0One of the fundamental problems in computer science

»Solution: linear scan, O(ND), slow ®



Approximate Nearest Neighbor Search; ANN

Result

0.23 |

N — ey N
argmin [1q — x, /15 gy 3

0.65 X1, X2, e, XN ne{1,2,..,N} 0.72

11.43 N A 1.68.

g € RP x, € RP X4

» Faster search
»Don’t necessarily have to be exact neighbors
» Trade off: runtime, accuracy, and memory-consumption



Result

0.20
3.25
0.72
1.68.

X174

Approximate Nearest Neighbor SWNN

0.23

3.15 o — ) argmin ||q — x,,||5
0.65 carc X1, X2, ) XN n€e{1,2,..,.N}

1.43 N—

q € R” BN x, €ER” 10° to 10°

32GB RAM

» Faster search

»Don’t necessarily have to be exact neighbors

» Trade off: runtime, accuracy, and memory-consumption
» A sense of scale: billion-scale data on memory



NN/ANN for CV

https://about.mercari.com/press/news/article/20190318_image_search/

)

Image retrieval

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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kNN recognition

Intra-modality Pose Viewpoint | Background | Occlusion | Illumination

Artist i Witness

L Y
Person Re-identification

[
[

LW e

Clustering

https://jp.mathworks.com/help/vision/ug/image-classification-with-bag-of-visual-words.html

image approximate nearest neighbor feature histogram feature vector

word count

12345+
visual word index

» Originally: fast construction of bag-of-features
» One of the benchmarks is still SIFT




cheat-sheet for ANN in Python (as of 2020. Can be installed by conda or pip)

: Exact nearest neighbor search - : If out of GPU-memory, make M smaller :
Jaih L P TS t‘l llllllllllllllllllll = IfoutofGPU memory ‘lllllllllllllllllllllllllll.‘ lllllllllllllllllllll L]

‘ Yes faiss-gpu: linear scan (GpulndexFlatL2) faiss-gpu: ivfpqg (GpulndexIVFPQ)
If topk > 2048 /
| Have GPU(s)? | faiss-cpu: linear scan (IndexFlatL2) gl U €1 SR HMETET, €

No Need more accurate results

Require fast data addition

If slow... ‘

About: 103 < N < 106 _

Would like to run
subset-search

pessssssssssssssssssanssnns e Sfe{aaTa ol If slow, or out Would like to run from
. e . el . several processes
= Alternative: faiss.IndexHNSWFlat in faiss-cpu : of memory

» Same algorithm in different libraries
.............................................. - Would like to adjust

the performance Adjust the IVF parameters:
Make nprobe larger = Higher accuracy but slower
Would like to adjust
the performance
Adjust the PQ parameters: Make M smlaller

Note: Assuming D = 100. The size of the problem is determined by DN. If 100 <« D, run PCA to reduce D to 100

faiss-cpu: hnsw + ivfpq

(IndexHNSWFlat + IndexIVFPQ)

If out of memory



Part 1.
Nearest Neighbor Search

Part 2:
Approximate Nearest Neighbor Search




Part 1.
Nearest Neighbor Search

Part 2:
Approximate Nearest Neighbor Search




Nearest Neighbor Search

Result
0.23
315 _— . (328
515 v~ |m argmin uq Xl
: 1) A2y ===y AN TLE{l 2,...N} 0.72
11.43 N A 1. 68
g € RP x, € RP

»Should try this first of all
»Introduce a naive implementation
»Introduce a fast implementation
v’ Faiss library from FAIR (you’ll see many times today. CPU & GPU)
» Experience the drastic difference between the two impls



M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5



M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5

def 12sgr(g, x): parfor g in Q: ﬁ Parallelize

diff = 0.0 for x in X: query-side

Select min by heap,
but omit it now

diff += (q[d] - x[d])**2

for (d = 0; d < D; ++d): 12sgr(q, x)‘j

return diff



M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5

def 12sgr(g, x): parfor g in Q: ﬁ Parallelize

diff = 0.0 for x in X: query-side

diff += (q[d] - x[d])**2 but omit it now

for (d = @3 d < D3 ++d): lzsqr\(q’ X)ﬁSelectminbyheap,

return diff

it M < 20 :

compute ||q — x||5 by SIMD
else

compute |lq — x||5 = |1q]l5 — 2q" x + ||x||5 by BLAS



M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5

def 12sgr(g, x): parfor g in Q: ﬁ Parallelize

diff = 0.0 for x in X: query-side

diff += (Q[d] - X[d])**z but omit it now

for (d = @3 d < D3 ++d): lzsqr\(q’ X)ﬁSelectminbyheap,

return diff

itM < 20 :

compute ||q — x||5 by SIMD
else

compute |lq — x||5 = |1q]l5 — 2q" x + ||x||5 by BLAS



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps(); )/
while (d >= 8) { ;

mx = _mm256_loadu_ps (x); X += 8; float: 32bit
my = _mm256_loadu_ps (y); y += 8;

const a_m_bl = mx - my;

msuml += a_m_bl * a_m_bil;

d -= 8;

msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) {
mx = _mm_loadu_ps (X); x += 4;
my = _mm_loadu_ps (y); y += 4;
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y);

ambl =mx - my;
msum2 += a_m bl * a m _bil;

}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2);



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps(); )/
while (d >= 8) { float: 32bit » 256bit SIMD Register
mx = _mm256_loadu_ps (x); X += 8; - .
ny = Tnm256_loadu ps (v): y 4= 8: » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; MX my
d -= 8;
}

msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) {
mx = _mm_loadu_ps (X); x += 4;
my = _mm_loadu_ps (y); y += 4;
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y);

ambl =mx - my;
msum2 += a_m bl * a m _bil;

}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2);



”x — y”% by SIMD Rename variables ff)r the
sake of explanation

D

=31

v

def 12sqr(x, v): IR
diff = 0.0
for (d = @; d < D; ++d):
diff += (x[d] - y[d])**2
return diff

fvec_L2sqr (const * X, <
const *y,
5 x [TTTITTT
msuml = _mm256_setzero_ps(); )/
while (d >= 8) {

mx = _mm256_loadu_ps (x); x += 8;

my = _mm256_loadu_ps (y); y += 8; v
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX
d -= 8;

msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) {
mx = _mm_loadu_ps (x); x += 4;
my = _mm_loadu_ps (y); y += 4;
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y);

ambl =mx - my;
msum2 += a_m bl * a m _bil;

}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2);

my

float: 32bit

» 256bit SIMD Register
» Process eight floats at once

17



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps(); )/
while (d >= 8) { float: 32bit » 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; . | .
ny = Tnm256_loadu ps (v): y 4= 8: | » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; MX my
d -= 8;
}
; 23235
msum2 = _mm256_extractfl28 ps(msuml, 1); ‘0“"‘.‘
msum2 += _mm256_extractf128 ps(msuml, 0); ADAAARALRAR
et AR AR
mx = _mm_loadu_ps (x); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y);
ambl =mx - my;
msum2 += a_m bl * a m _bil;
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss 32 (msum2); ]_Eg



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const Y, X return diff
d)
msuml = _mm256_setzero_ps(); )/
while (d >= 8) { float: 32bit » 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; . | .
ny = mm256_loadu ps (y): y += 8. | > Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX my
d -= 8;
}
; 2393
msum2 = _mm256_extractfl128 ps(msuml, 1); ‘0"“‘.‘
msum2 += _mm256_extractfl128 ps(msuml, 0); ADAAARALRAR
(@ ) ¢ AR AR
mx = _mm_loadu _ps (X); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_ —
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4; <>
) <
o] <2
o] <2
} W0 L0 C oSS O
s o) ¢ PRIV
mx = masked read (d, x);
my = masked_read (d, y); msuml E
ambl =mx - my;
msum2 += a_m bl * a m _bil;
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss 32 (msum2); ]_E)



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps(); )/
while (d >= 8) { 1;loat 39bit > 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; : .
ny = Tnm256_loadu ps (v): y 4= 8: » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; MX my
d -= 8;

msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) {
mx = _mm_loadu_ps (X); X += 4;
my = _mm_loadu_ps (y); y += 4;
const ambl =mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y); msuml E

ambl =mx - my;
msum2 += a_m bl * a m _bil;

}

msum2 = _mm_hadd_ps (msum2, msum2);

msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); ;2()



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps(); y
while (d >= 8) { 'f;loat 39bit > 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; . | .
ny = mm256_loadu ps (y): y += 8. » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX my
d -= 8;
}
; >SS
msum2 = _mm256_extractfl28 ps(msuml, 1); ‘0"“‘.‘
msum2 += _mm256_extractf128 ps(msuml, 0); ADAAARALRAR
e ¢ AR AR R
mx = _mm_loadu _ps (X); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d > 0) {
mx = masked read (d, x);
my = masked_read (d, y); msuml E
ambl =mx - my;
msum2 += a_m bl * a m _bil;
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss 32 (msum2); 21



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const Y, X return diff
d)
msuml = _mm256_setzero_ps(); )/
while (d >= 8) { float: 32bit » 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; . | .
ny = mm256_loadu ps (y): y += 8. > Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX my
d -= 8;
}
; 2393
msum2 = _mm256_extractfl128 ps(msuml, 1); ‘0"“‘.‘
msum2 += _mm256_extractfl128 ps(msuml, 0); ADAAARALRAR
(@ ) ¢ AR AR
mx = _mm_loadu _ps (X); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_ —
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4; <>
) <
o] <2
o] <2
} W0 L0 C oSS O
s o) ¢ PRIV
mx = masked read (d, x);
my = masked_read (d, y); msuml E
ambl =mx - my;
msum2 += a_m bl * a m _bil;
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss 32 (msum2); ;2;2



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const Y, X return diff
d)
msuml = _mm256_setzero_ps(); )/
while (d >= 8) { float: 32bit » 256bit SIMD Register
mx = _mm256_loadu_ps (x); X += 8; . | .
ny = mm2s6 loadu ps (v): y 4o 8. » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m_bl * a_m_bi; mX my
d -= 8;
}
: 23232
msum2 = mm256_extractfl28 ps(msuml, 1); ‘0“"‘.‘
msum2 += _mm256_extractf128 ps(msuml, 0); ADAAARALRAR
e CEEEIEEE
mx = _mm_loadu_ps (x); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; _— —
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4; <
B) <<
<>
I oK < >
} o S oS0 S0 oS

<
<
<
<
QN
<

if (d > 0) { gg’g?
mx = masked read (d, x);

my = masked_read (d, y); mSlJml E

a_m_bl = mx - my;

msum2 += a_m bl * a m _bil;

¥ @

msum2 = _mm_hadd_ps (msum2, msum2); l l l

msum2 = _mm_hadd_ps (msum2, msum2); msum2 ﬂ » 128bit SIMD Register I
return _mm_cvtss_f32 (msum2); ;253



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps(); )/
while (d >= 8) { ;

mx = _mm256_loadu_ps (x); X += 8; float: 32bit
my = _mm256_loadu_ps (y); y += 8;

const a_m_bl = mx - my;

msuml += a_m_bl * a_m_b1; mX my ﬂ » 128bit SIMD Register I

d -= 8;

msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) { @@@@

mx = _mm_loadu _ps (x); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_ —
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;

}

if (d > 0) { qg’gg’gg’g?
mx = masked read (d, x); E
my = masked_read (d, y); msumz
a_m_bl = mx - my;
msum2 += a_m bl * a m _bil;

}

msum2 = _mm_hadd_ps (msum2, msum2);

msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); ;2[1



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = mm256_setzero ps(); y 4 The rest I
while (d >= 8) { ;
mx = _mm256_loadu_ps (x); X += 8; float: 32bit
my = _mm256_loadu_ps (y); y += 8;
const a_m_bl = mx - my;
msuml += a_m bl * a_m bil; MX 000 my ojofo ﬂ » 128bit SIMD Register I
d -= 8;
}

msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) { @@@@

mx = _mm_loadu _ps (X); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_ —
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;

d -= 4;
}

if (d > 0) { qg’qg’qg’g?
mx = masked_read (d, x); E
my = masked_read (d, y); msumz
a_m_bl = mx - my;
msum2 += a_m bl * a m_bil;

}

msum2 = _mm_hadd_ps (msum2, msum2);

msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); ;ZES



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
{
msuml = mm256_setzero ps(); y 4 The rest I
while (d >= 8) { ;
mx = _mm256_loadu_ps (x); X += 8; float: 32bit
my = _mm256_loadu_ps (y); y += 8;
const a_m_bl = mx - my;
msuml += a_m_bl * a_m_bl; MX o|ojo my o|ofo ﬂ » 128bit SIMD Register I
d -= 8;
}
msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);
) AAR
mx = _mm_loadu_ps (x); X += 4; am bl
my = _mm_loadu_ps (y); y += 4; —_ —
const ambl =mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
i@ o) o e
mx = masked read (d, x);
my = masked read (d, y); msumz
ambl =mx - my; |/ //
msum2 += a_m bl * a m _bil; Gi jr)
¥
msum2 = _mm_hadd_ps (msum2, msum2); @l /
msum2 = _mm_hadd_ps (msum2, msum2); m l
return _mm_cvtss_f32 (msum2); 26
) []



”x — y”z by SIMD BUEE variables for the def 12sqr(x, y): Ref.
2 sake of explanation diff = 0.0
D=31 for (d = @; d < D; ++d):

fvec_L2sgr (const diff += (x[d] - y[d])**2

* X, <
const *y, return diff
d) X '
{
msuml = mm256_setzero ps(); y 4 The rest I

» SIMD codes of faiss are simple and easy to read

» Being able to read SIMD codes comes in handy
sometimes; why this impl is super fast

» Another example of SIMD L2sqgr from HNSW:

https://github.com/nmslib/hnswlib/blob/master/hnswlib/space [2.h

r;lx = masked read (d, x); T T T
my = masked read (d, y); msumz E
ambl =mx - my; |/ //
msum2 += a_m bl * a m _bil; Gi jr)
}
|/

msum2 = mm_hadd_ps (msum2, msum2); @
msum2 = _mm_hadd_ps (msum2, msum2); m l
return _mm_cvtss 32 (msum2); |:|



https://github.com/nmslib/hnswlib/blob/master/hnswlib/space_l2.h

M D-dim query vectors Q=1{q9.,9,,..,q9y}
N D-dim database vectors X = {x1,X,, ..., Xy}

Task : Given g € Q and x € X, compute ||q — x||5

def 12sgr(g, x): parfor g in Q: ﬁ Parallelize

diff = 0.0 for x in X: query-side

for (d = 0; d < D; ++d): 1259r(d, X) ~Jselect min by heap,
diff += (q[d] - x[d])**2 ‘ﬁ

but omit it now

return diff

it M < 20 :

compute ||q — x||5 by SIMD
else

compute |lq — x||5 = llqll5 — 2q"x + ||x]|5 by BLAS



Compute [lg — x|I5 = lIqll5 — 2q " x + ||x]|5 with BLAS
Stack M D-dim query vectors to a D X M matrix: Q=1q94.495,..,9y] € RD*xM
Stack N D-dim database vectorstoa D X N matrix: X =[x, X5, ..., xy] € RP*N

# Compute tables |SIMD—acceIeratedfunction|

g_norms = norms(Q) # llqill5 llgzll5, ... llayll3
X_nor‘ms = nor‘mS(X) # laq 5 122015 o) Iz I3
ip = sgemm_(Q, X, ..) # Q'X

\l » Matrix multiplication by BLAS

» Dominant if Q and X are large

» The difference of the background matters:
v" Intel MKL is 30% faster than OpenBLAS

# Scan and sum
parfor (m = @; m < M; ++m):

for (n = ©@; n < N; ++n):
dist = g norms[m] + X norms[n] - ip[m][n]

(am —x2) ([2al2) (%) (@ Omd &




NN in GPU (faiss-gpu) is 10x faster than NN in CPU (faiss-cpu)

Benchmark: https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks

> NN-GPU always compute ||ql|l5 — 2q " x + ||x]|5

» k-means for 1M vectors (D=256, K=20000)

v" 11 min on CPU

v' 55 sec on 1 Pascal-class P100 GPU (float32 math) >
v' 34 sec on 1 Pascal-class P100 GPU (float16 math)

v’ 21 sec on 4 Pascal-class P100 GPUs (float32 math)

v' 16 sec on 4 Pascal-class P100 GPUs (float16 math)

x10 faster HREN

» If GPU is available and its memory is enough, try GPU-NN
» The behavior is little bit different (e.g., a restriction for top-k)


https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks

Reference

» Switch implementation of L2sqr in faiss:

[https://github.com/facebookresearch/faiss/wiki/Implementation-notes##matrix-multiplication-to-do-many-I2-
distance-computations]

» Introduction to SIMD: a lecture by Markus Pischel (ETH) [How to Write Fast

Numerical Code - Spring 2019], especially [SIMD vector instructions]

v' https://acl.inf.ethz.ch/teaching/fastcode/2019/
v' https://acl.inf.ethz.ch/teaching/fastcode/2019/slides/07-simd.pdf

> SIMD codes for faiss [https://github.com/facebookresearch/faiss/blob/master/utils/distances simd.cpp]

» L2sqr benchmark including AVX512 for faiss-L2sqr

[https://gist.github.com/matsui528/583925f88fcb08240319030202588c74]
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https://github.com/facebookresearch/faiss/wiki/Implementation-notes#matrix-multiplication-to-do-many-l2-distance-computations
https://acl.inf.ethz.ch/teaching/fastcode/2019/
https://acl.inf.ethz.ch/teaching/fastcode/2019/slides/07-simd.pdf
https://acl.inf.ethz.ch/teaching/fastcode/2019/
https://acl.inf.ethz.ch/teaching/fastcode/2019/slides/07-simd.pdf
https://github.com/facebookresearch/faiss/blob/master/utils/distances_simd.cpp
https://gist.github.com/matsui528/583925f88fcb08240319030202588c74

Part 1.
Nearest Neighbor Search

Part 2:
Approximate Nearest Neighbor Search
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— Inverted index + data compression

Space partition ; Data compression
L » k-means : » Raw data
T » PQ/OPQ ; » Scalar quantization
O » Graph traversal ! » PQ/OPQ
it > etc... | > etc...
c :
O 1 JHHEREEN
— — [ [ [ ]
S — [T

// I :
|
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N 0.68 » - Asymmetric Distance
!I: | lo71 : )
o Tree / Space Partitioning .
o Hamming-based
'é 8'2‘; j Linear-scan by
Graph traversal 0.68 » . Hamming distance
0.71 o
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Locality Sensitive Hashing (LSH)
» LSH = Hash functions + Hash tables
» Map similar items to the same symbol with a high probability

d
_ BN

X13
o

Search [N
q - by the Euclidean distance
o257/
: m




Locality Sensitive Hashing (LSH)
» LSH = Hash functions + Hash tables
» Map similar items to the same symbol with a high probability

— |:|\ E.g., random projection [Dater+, SCG 04]

X1 H() = [ (), e, by (O

a’x+b
S I u/i@ @) =

w

Search [N
q - by the Euclidean distance
o257/
: m




Locality Sensitive Hashing (LSH)

> 1CH — Lach fiinctinne 4 HAach +ahlac

©:
» Math-friendly
» Popular in the theory area (FOCS, STOC, ...)
®:
» Large memory cost
v Need several tables to boost the accuracy
v' Need to store the original data, {x,,}_;, on memory

» Thus, in recent CV papers, LSH has been treated as a classic-

method ®®®

» Data-dependent methods such as PQ are better for real-world data
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I
.
/ OB—HPY —_ Compare q with x4, Xc, X5, ...
by the Euclidean distance

In fact:
» Consider a next candidate ™ practical memory consumption

(Multi-Probe [Lv+, VLDB 07])
» A library based on the idea: FALCONN




[ FALCONN-LIB / FALCONN <® Unwatch a2 TrStar | 852 Y Fork 164
a ‘ O | l I I <> Code Issues 51 Pull requests 0 Actions Projects 0 Wiki Security 0 Insights
FAst Lockups of Cosine and Other Nearest Neighbors (based on fast locality-sensitive hashing) http://falc
ghb h  Ish

https://github.com/falconn-1ib/falconn

$> pip install FALCONN

fix details

ggggggggggg

table = falconn.LSHIndex(params cp) oo
table.setup(X-center)
query object = table.construct query object()

# query parameter config here

query object.find nearest neighbor(Q-center, topk)

A number of major changes implemented by Alejandro Cassis. llya Razen

© Faster data addition (than annoy, nmslib, ivfpq)
© Useful for on-the-fly addition
® Parameter configuration seems a bit non-intuitive

39


https://github.com/falconn-lib/falconn

Reference
» Good summaries on this field: CVPR 2014 Tutorial on Large-Scale Visual
Recognition, Part I: Efficient matching, H. Jégou

[https://sites.google.com/site/Isvrtutorialcvprl4/home/efficient-matching]

» Practical Q&A: FAQ in Wiki of FALCONN [nttps://sithub.com/FALCONN-LIB/FALCONN/wiki/FAQ]

» Hash functions: M. Datar et al., “Locality-sensitive hashing scheme based on
p-stable distributions,” SCG 2004.

» Multi-Probe: Q. Lv et al., “Multi-Probe LSH: Efficient Indexing for High-
Dimensional Similarity Search”, VLDB 2007

» Survey: A. Andoni and P. Indyk, “Near-Optimal Hashing Algorithms for
Approximate Nearest Neighbor in High Dimensions,” Comm. ACM 2008


https://sites.google.com/site/lsvrtutorialcvpr14/home/efficient-matching
https://github.com/FALCONN-LIB/FALCONN/wiki/FAQ

10°

10°

Space partition

— Inverted index + data compression

Data compression

» Raw data
» Scalar quantization
» PQ/0OPQ
> etc...

v

@

) » k-means
TU » PQ/OPQ

O » Graph traversal
i > etc...

c .‘
09 . "‘-‘_\.‘.‘7

~ For raw data: Acc. ©, Memory: ® =

() . . .
r— Locality Sensitive Hashing (LSH)
O

wn

I

g Tree / Space Partitioning

Graph traversal

~ For compressed data: Acc. ®, Memory: ©

Look-up-based

0.34

0.22 » ID: 2
0.68 ID: 123
0.71

J

Hamming-based
0.34

0.22
0.68
0.71

® ® =] ®

}
}

Linear-scan by
Asymmetric Distance

Linear-scan by
Hamming distance




FLANN: Fast Library for Approximate Nearest Neighbors

Images are from [Muja and Lowe, TPAMI 2014]

Randomized KD Tree k-means Tree

» Automatically select “Randomized KD Tree” or “k-means Tree”
https://github.com/mariusmuja/flann

© Good code base. Implemented in OpenCV and PCL

© Very popular in the late 00's and early 10’s

@® Large memory consumption. The original data need to be stored
@ Not actively maintained now
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https://github.com/mariusmuja/flann

All images are cited from the author’s blog post (https://erikbern.com/2015/10/01/nearest-

neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html)
Annoy ghb d t dels-part-2-how-t h-in-high-d I-sp html
“2-means tree”+ “multiple-trees” + “shared priority queue”

Select two points randomly Divide up the space Repeat hierarchically

» Focus the cell that the query lives
» Compare the distances

I Can traverse the tree by log-times comparisons 43



https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

All images are cited from the author’s blog post (https://erikbern.com/2015/10/01/nearest-

neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html)
Annoy ghb d t dels-part-2-how-t h-in-high-d I-sp html
“2-means tree”+ “multiple-trees” + “shared priority queue”

If we need more data points, use a priority queue



https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

A n n Oy 1 spotify / annoy QUsedby~ Tk | ©uUmwstch~ 332 Wunstar | Tk | % Fork | 778
nsig

<> Code (1) lssues 21 Pull requests 3 Actions Projects 0 Wiki ecuri

https://github.com/erikbern/annoy | - N
. . Approximate Nearest Neighbors in C++/Python optimized for memory usage and load
$ > p 1 p 1 n S t a 1 1 a n n Oy c-plus-plus pythen nearest-neighbor-search locality-sensitive-hashing approximate-nearest-ne

-0~ 745 commits ¥ 19 branches D 0 packages O 23 release: &[5 Apache-2.0

G Conoue

t = An n Oy I n d e X ( D ) Branch: master = New pull request Create new file | Upload files = Find file

-FO P n ) X i n e n u m e r‘ a t e ( X ) : I ericbern Update README st + Latest commit 8b6a825 on 12 May
| annoy remove subclass 3 years ago

L4
t [ a d d_l t e m ( n J X ) | debian removed boost from debian/control and .travis.yml 5 years ago
t ° b u i l d ( n_t r‘e e S ) I examples fix another futurewarning 11 months ago

W s A more informative error for #423 last month

B test Fix misc minor compilation warnings 3 months ago

[ .gitignore Improve .gitignore coverage of files created by tests & months ago
t.get _nns_by vector(q, topk)

travis.yml unrelated os x failure, try bumping python versoin 6 months ago

[ LICENSE added Apache license 7 years ago

© Developed at Spotify. Well-maintained. Stable

© Simple interface with only a few parameters

© Baseline for million-scale data

© Support mmap, i.e., can be accessed from several processes
@ Large memory consumption

@ Runtime itself is slower than HNSW ie


https://github.com/erikbern/annoy

10°

10°

Space partition

— Inverted index + data compression

Data compression

» Raw data
» Scalar quantization
» PQ/0OPQ
> etc...

v

@

) » k-means
TG > PQ/OPQ

O » Graph traversal
i > etc...

c :
09 . "‘-‘_\.‘.‘7
=

~ For raw data: Acc. ©, Memory: ® =

() . . :
r— Locality Sensitive Hashing (LSH)
O

W

I

g Tree / Space Partitioning

Graph traversal

~ For compressed data: Acc. ®, Memory: ©

Look-up-based

0.34

0.22 » ID: 2
0.68 ID: 123
0.71

J

Hamming-based
0.34

0.22
0.68
0.71

® ® =] ®

}
}

Linear-scan by
Asymmetric Distance

Linear-scan by
Hamming distance




Graph traversal
» Very popular in recent years

» Around 2017, it turned out that the graph-traversal-based
methods work well for million-scale data

> Pioneer:

v Navigable Small World Graphs (NSW)
v’ Hierarchical NSW (HNSW)

» Implementation: nmslib, hnsw, faiss



*{Yolo]gs @ 'mages are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector
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*{Yolo]gs @ 'mages are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
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»Given a new database vector, create new edges to neighbors
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*{Yolo]gs @ 'mages are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
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*{Yolo]gs @ 'mages are from [Malkov+, Information Systems, 2013]

» Early links can be long

» Such long links encourage a large hop,
making the fast convergence for search

Graph of E
xl, ...,xgo

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
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m Images are from [Malkov+, Information Systems, 2013]
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m Images are from [Malkov+, Information Systems, 2013]

» Given a query vector
» Start from a random point

entry point
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m Images are from [Malkov+, Information Systems, 2013]

entry point

» Given a query vector
» Start from a random point
» From the connected nodes, find the closest one to the query
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m Images are from [Malkov+, Information Systems, 2013]

entry point

» Given a query vector
» Start from a random point
» From the connected nodes, find the closest one to the query
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m Images are from [Malkov+, Information Systems, 2013]

entry point

» Given a query vector
» Start from a random point

» From the connected nodes, find the closest one to the query
» Traverse in a greedy manner
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m Images are from [Malkov+, Information Systems, 2013]

entry point

» Given a query vector
» Start from a random point

» From the connected nodes, find the closest one to the query
» Traverse in a greedy manner
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Extension: Hierarchical NSW; HNSW

» Construct the graph hierarchically malkov and Yashunin, TPaMI, 2019]
» This structure works pretty well for real-world data

Layer=2
\ 4 Search on a coarse graph
Move to the same node on a
finer graph

4 Repeat
\/

[Malkov and Yashunin, TPAMI, 2019]

Decreasing characteristic radius




NMSLIB (Non-Metric Space Library) .

https://github.com/nmslib/nmslib

$> pip install nmslib S e
index = nmslib.init(method=‘hnsw’) -
index.addDataPointBatch(X) S
index.createIndex(paramsl) B
index.setQueryTimeParams (params2) R

index.knnQuery(q, topk)

© The “hnsw” is the best method as of 2020 for million-scale data
© Simple interface

© If memory consumption is not the problem, try this

® Large memory consumption

@ Data addition is not fast
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https://github.com/nmslib/nmslib

Other implementations of HNSW

Hnswlib: https://github.com/nmslib/hnswlib

» Spin-off library from nmslib

» Include only hnsw

» Simpler; may be useful if you want to extend hnsw

Faiss: https://github.com/facebookresearch/faiss
» Libraries for PQ-based methods. Will Introduce later
» This lib also includes hnsw
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https://github.com/nmslib/nmslib
https://github.com/facebookresearch/faiss

Other graph-based approaches

» From Alibaba:

C. Fu et al., “Fast Approximate Nearest Neighbor Search with the Navigating Spreading-out
Graph”, VLDB19

https://github.com/ZJULearning/nsg

» From Microsoft Research Asia. Used inside Bing:

J. Wang and S. Lin, “Query-Driven Iterated Neighborhood Graph Search for Large Scale
Indexing”, ACMMM12 (This seems the backbone paper)
https://github.com/microsoft/SPTAG

» From Yahoo Japan. Competing with NMSLIB for the 1%t place of benchmark:

M. lwasaki and D. Miyazaki, “Optimization of Indexing Based on k-Nearest Neighbor Graph for
Proximity Search in High-dimensional Data”, arXiv18

https://github.com/yahoojapan/NGT
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https://github.com/ZJULearning/nsg
https://github.com/microsoft/SPTAG
https://github.com/yahoojapan/NGT

Reference

» The original paper of Navigable Small World Graph: Y. Malkov et al., “Approximate
Nearest Neighbor Algorithm based on Navigable Small World Graphs,” Information
Systems 2013

» The original paper of Hierarchical Navigable Small World Graph: Y. Malkov and D.
Yashunin, “Efficient and Robust Approximate Nearest Neighbor search using Hierarchical
Navigable Small World Graphs,” IEEE TPAMI 2019



10°

10°

billion-scale

million-scale

Space partition

» k-means

» PQ/OPQ

» Graph traversal
> etc...

— Inverted index + data compression

Data compression

» Raw data

» Scalar quantization
» PQ/0OPQ

> etc...

v

v

LT[ 1]

»
.

~ For raw data: Acc. ©, Memory: ® =—

Locality Sensitive Hashing (LSH)

Tree / Space Partitioning

Graph traversal

~ For compressed data: Acc. ®, Memory: © ']

0.34
ID: 123
0.71
J
0.22

Look-up-based
0.22

0.68
Hamming-based
0.34

0.68 »

0.71

® ® =] ®

}
}

Linear-scan by
Asymmetric Distance

Linear-scan by
Hamming distance




Basic idea

MO0

2.35
D 0.82

0
O
Q.
™

A[0.54] |

ylo.a2] 1.

3.34

0.83
0.62

11.45.

‘apoa‘ @

» Need 4ND byte to represent N real-valued vectors
using floats

» If N or D is too large, we cannot read the data on memory
v’ E.g.,512GBforD = 128,N = 10°

» Convert each vector to a short-code

» Short-code is designed as memory-efficient
v' E.g., 4 GB for the above example, with 32-bit code

> Run search for short-codes
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D

0.54]]

2.35
0.82

10.421 L1.

0
o
Q.
™

Basic idea

2)

‘apoa‘ @

3.34

0.83

10.62
1.45

> Need AND hute to renrecent N real-valiied vectaore

What kind of conversion is preferred?

1. The “distance” between two codes can be
calculated (e.g., Hamming-distance)

2. The distance can be computed quickly
3. That distance approximates the distance

between the original vectors (e.g., L,)

the above three criteria

4. Sufficiently small length of codes can achieve
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B \
» Convert x to a B-bit binary vector: :

f(x) = b € {0,1)" _—

» Hamming distance
dy(by,by) = |by @ by| ~ d(xq, x;) |
» A lot of methods: jjj

v’ J. Wang et al., “Learning to Hash for Indexing Big Data - A
Survey”, Proc. IEEE 2015

v ). Wang et al., “A Survey on Learning to Hash”, TPAMI 2018

pressed data: Acc. ®, Memory: ©

-up-based

ID: 2 Linear-scan by
\ lg,sﬂ e Asymmetric Distance
Tree / Space Partitioning i
amming-base
_ 0'68

» Not the main scope of this tutorial;
PQ IS Usua”y more accurate
Ui j Linear-scan by
0o » . ‘ Hamming distance
0.71 :

Graph traversal
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Product Quantization; PQ pégou, Trami 2011
» Split a vector into sub-vectors, and quantize each sub-vector

A

vector; x

r0.347
0.22
0.68
1.02
0.03

L0.71-

ID: 1
0.13
0.98
ID: 1
0.3
1.28

|

Codebook

ID: 2 ID: 256
032] ... l1.03
0.27 0.08
ID: 2 ID: 256
0.35] . l0.99]
0.12 1.13

Trained beforehand by
k-means on training data
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Product Quantization; PQ pégou, Trami 2011
» Split a vector into sub-vectors, and quantize each sub-vector

A

vector; x

0.34°
0.22
0.68
1.02
0.03

L0.71-

} -

Codebook

-y,

D:1 (p:2 1
0.131170.327;
0.981l0.271!

ID: 1 ID: 2
0.3 ] 0.35]
1.281 10.12

|

D: 256
1.031

0.08

D: 256
0.99]

1.13

——{p.2 |4

Trained beforehand by
k-means on training data

PQ-code; x
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Product Quantization; PQ pégou, Trami 2011

» Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data

vector; x Codebook
] 1 D:1 (1D:2 1 ID: 256 i .=
1 0.34 } - | [0:13 :6%%: l1.03 | PQ-code; X
|
ez e B PR
0.63 0.3 1 [0.35 ; | 10.99 D:123 || M
D 1.02 = 1154] o712 Il 113 T
0.03 v
v L0.71-




Product Quantization; PQ pégou, Trami 2011

» Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

vector; x i Codebook k-means on training data
(BB} = [ - o P
U
D 1.02 } = 1-?8] 0:12] U l1:13] +1D: 123 M
0.03 :r'i ID: 87 ||
v L0.71- L ] J




Product Quantization; PQ pégou, Trami 2011

» Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

vector: x i Codebook k-means on training data

Ar 1 ID: 1 {--;-\l ID: 256 ) L=
Uen - | [0.13 110,321, v [103]. PQ-code; x
0.22 0.98]1l0.271! 0.08 \iID- > A
0.68 ID:1  ID:2 :'": ID: 256 . M

: 0.3 7 [0.35 0.99 _
D 1.02 } = 1-28] 0.12] J:_E 1.13] 31D: 123

0.03 :‘"’: ID: 87 ||

v L0.71- :_E

» Simple

Bar notation for PQ-code in this tutorial:

» Memory efficient X€RP » Xe(l,..,2561M
» Distance can be esimated -




Product Quantization: Memory efficient

A

vector; x

0.34°
0.22
0.68
1.02
0.03

L0.71-

}
}

-

-

Codebook

D:1 (1D:2 1 ID: 256 ) L

0.131170.32]} ... l1_03 | PQ-code; x

0981027} " lo.osl T—— [ 5|4

ID:1  ID:2 If"’: ID: 256 :

0.37710.35] 4,, (099 .

1.28] 0_12] ) 1_13] >+1D: 123
i [ID: 87 ||

-
—
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Product Quantization: Memory efficient

vector; x

0.34°
0.22
0.68
1.02
0.03

A

D

float: 32bit V

e.g., D =128

Codebook
D:1 (1D:2 1 ID: 256 _ L
0131703270 103). PQ-code; x
0.981l0271} —~ lo.os8! [T—y |5
ID:1  ID:2 If'": ID: 256 :
0.37[035] 4, [099 .
1.28] 0_12] : } 1_13] )ID 123

o | ID: 87

128 x 32 = 4096 [bit]

-
—




Product Quantization: Memory efficient

vector; x Codebook
Ar 1 ID: 1 {--;-\l ID: 256 ) L=
0.34 } - | [0:13 :6[.)3§ L 103). PQ-code; X
I

0.22 (I)[.)?zla LQ-;Z, - .ﬁiozi \iID: 5> |4

0.68 0.3 1 0.35 ; | 10.99 19 M
D 1.02 = ([, 58] lo72] :"E 193] 1D: 123

| T [D: 87
0.03 :f' i A \ 4
float: 32bit V \ | J uchar: 8bit

eg., D =128

128 X 32 = 4096 [bit]

eg., M =8
8 X 8 = 64 [bit]
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vector; x

1034 _,
0.22 }

0.68
D 1.02
0.03

float: 32bit V

eg., D =128

Product Quantization: Memory efficient

|

Codebook
D:1 (1p:2 1 ID: 256
0.13]:l0.32 | . l1.o3 _
0.981110.271} 0.08
ID:1  ID:2 1 ID: 256
0.3] 0.35] 5 0.99]
1.28l lo.12l 1 11113
r—

N\

——{p.2 |4

PQ-code; x

128 X 32 = 4096 [bit]

M

>1D: 123
(ID:87) ||

uchar: 8bit

/9



Product Quantization: Distance estimation
Database vectors

Query; g € RP
0.34
0.22
0.68
1.02
0.03
0.71

X1
0.54
2.35
0.82
0.42
0.14
0.32

X2
0.62
0.31
0.34
1.63
1.43
0.74

XN
3.34
0.83
0.62
1.45
0.12
2.32



Product Quantization: Distance estimation
Database vectors

Query; g € RP
0.34
0.22
0.68
1.02
0.03
0.71

X, X,
0.547 10.62
2.35(10.31
0.82](0.34
0.42]|1.63
0.14]11.43
0.321 1L0.74

Product
guantization

XN
3.34
0.83
0.62
1.45
0.12
2.32
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Product Quantization: Distance estimation

Query; g € RP
0.34
0.22
0.68
1.02
0.03
0.71

BT

ID: 99

X1 X2
ID: 42 ID: 221
ID: 67 ID: 143
ID: 92 ID: 34

ID: 234

ID: 3
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Product Quantization: Distance estimation

Query; q € R m
0.34

0.22 a2 . N

ID: 42 ID: 221 ID: 99
0.68 ID: 67 | |ID:143 | -+ |ID:234
1.02 ID:92 | |ID: 34 ID: 3
0.03

0.71

> d(qg, x)? can be efficiently approximated by d (g, x)?
» Lookup-trick: Looking up pre-computed distance-tables
» Linear-scan by d,



import numpy as np NOt pSGUdO COdeS

from scipy.cluster.vqg import vqg, kmeans?Z
from scipy.spatial.distance import cdist

def train(vec, M): def search(codeword, pgcode, query):
Ds = int (vec.shape[l] / M) # Ds =D / M M, _K, Ds = codeword.shape
# codeword[m] [k] = c' # dist_table = D(m,k)
codeword = np.empty ((M, 256, Ds), np.float32) dist_table = np.empty ((M, 256), np.float32)
for m in range (M) : for m in range (M) :
vec_sub = vec[:, m # Ds : (m + 1) = Ds] query_sub = query[m = Ds: (m + 1) = Ds]
[

codeword[m], label = kmeans?2 (vec_sub, 256) dist_table[m, :] = cdist([query_sub],

— codeword[m], ’sgeuclidean’)[0] # Egq. (5)

return codeword
# Eq. (6)

N dist = np.sum(dist_table[range (M), pgcode], axis=1)

def encode (codeword, vec): # vec = {xn.hzl

M, _K, Ds = codeword.shape
# pgcode[n] = i(x,), pgcode[n][m] = i"(Xn)
pacode = np.empty ((vec.shape[0], M), np.uint8)

return dist

if _ name_ == "_ main_ ":
for m in range(M): # Egq. (2) and Eq. (3) # Read vec_train, vec ({xn})_;), and query (y)
vec_sub = vec[:, m » Ds: (m + 1) =* Ds] M= 4
pgcode[:, m], dist = vg(vec_sub, codeword[m]) codeword = train(vec_train, M)
pagcode = encode (codeword, vec)
return pgcode dist = search(codeword, pgcode, query)

print (dist)

» Only tens of lines in Python
» Pure Python library: nanopq https://github.com/matsui528/nanopq
» pip install nanopg
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https://github.com/matsui528/nanopq

Deep PQ

» Supervised search (unlike the original PQ)
» Base-CNN + PQ-like-layer + Some-loss
» Need class information

CNN

» T.Yuetal.,, “Product Quantization Network for Fast
Image Retrieval”, ECCV 18, 1JCV20

1 share
| Weights
v

! Share
Weights
A4

I—— il
1 Bl

CNN [—

» L. Yuetal., “Generative Adversarial Product
Quantisation”, ACMMM 18

» B.Klein et al., “End-to-End Supervised Product

Quantization for Image Search and Retrieval”, CVPR 19

Asymmetric
SPQ 1 ’ *| Triplet Loss
t share
Weights
SPQ i

From T. Yu et al., “Product Quantization Network for Fast Image Retrieval”, ECCV 18
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More extensive survey for PQ

Pre-rotation
- Rotate the space

Original paper
[Jégou+, TPAMI 11]

PQ encoding

Search system with
inverted indexing

Cartesian k-means
[Norouzi+, CVPR 13]

Optimized PQ
[Ge+, TPAMI 14]

~— Several assignment strategies =m———

- Combination - Sparse coding

Improvement of

Related topics

Optimized Ck-means Sparse PQ
[Wang+, TKDE 15] [Ning+, TMM 17]

PQ-encoding

- Assignment tree

Tree quantization
[Babenko+, CVPR 15]

Hierarchical ==

CompQ
[0zan+, TKDE 16]

Qa-RVQ/PQ
[Jain+, ECCV 16]

Generalization
- The sum of D-dim vectors
Additive quantization

[Babenko+, CVPR 14]
[Martinez+, ECCV 16]

|

Coarse-quantization:
k-means

Distance-estimation:
PQ-code for a residual

Improvement of distance-estimation

Improvement of search system
with inverted indexing

[Martinez+, ECCV 18]

s Novel problem settings §

Fast encoding
[Zhang+, CVPR 15]

~ Supervised Deep PQ
with the model training

[Yu+, ECCV 18]
[Yu+, ACMMM 18]

Supervised
[Wang+, CVPR 16] >
[Eghbali+, CVPR 19]

[Klein+, CVPR 19]

Multiple k-means
[Xia+, ICCV 13]
PQ
[Babenko+, CVPR 12]

Fast enumeration
[lwamura+, ICCV 13
w/o distance-estimation
[Matsui+, ICCV 15]

Hierarchical

[Babenkol+, CVPR 16]
.

7 Improvement of coarse-quantization ~

Multi-modal
L [Zhang, CVPR 16] y

OPQ + local codebook
[Babenko+, TPAMI 15]

HNSW

[Douze+, CVPR 18]
[Baranchuk+, ECCV 18]

J/

~Hardware-based acceleration=y

GPU
[Wieschollek+, CVPR 16]
[Johnson+, TBD 20]

SIMD
[André+, VLDB 15]
[André+, ICMR 17]
[Blalock, KDD 17]
[André+, TPAMI 20]

FPGA
[Zhang+, CVPR 18]

. J

— |Image search with PQ =

[Jégou, CVPR 10]
[Spyromitros-Xious+, TMM 14]
[Li+, TMM 17]

~ Additional bit management ==

Distance-encoded
[Heo+, CVPR 14]

— Applications using PQ

CNN quantization
[Bagherinezhad+, CVPR 17]
[Wu+, CVPR 16]

Clustering
[Matsui+, ACMMM 17]

Sparse coding
[Ge+, CVPR 14]

PCA-tree
[Babenko+, CVPR 17]

Search for a subset
[Matsui+, ACMMM 18]

\

~ Connection to binary hashing

Polysemous codes
[Douze+, ECCV 16]

k-means hashing
[He+, CVPR 13]

Distance table

[Wang+, ACMMM 14]

> https://github.com/facebookresearch/faiss/wiki#tresearch-foundations-of-faiss

> http://yusukematsui.me/project/survey pqg/survey pg jp.html

» Y. Matsui, Y. Uchida, H. Jégou, S. Satoh “A Survey of Product Quantization”, ITE 2018.



http://yusukematsui.me/project/survey_pq/survey_pq_jp.html
http://yusukematsui.me/project/survey_pq/survey_pq_jp.html

Hamming-based vs Look-up-based

Hamming-based

10.347
0.22
0.68 »
1.02

0.03
L0.71-

|l |lr|O|RrRr |

Look-up-based

10.341
0.22 ID: 2
0.68 » _
02 ID: 123
0.03 ID: 87
0.71.

Representation

Binary code : {0,1}?

PQ code : {1,...,256}"

Distance Hamming distance Asymmetric distance
Approximation |© ©O

Runtime ©O ©

Pros No auxiliary structure Can reconstruct the original vector

Cons

Cannot reconstruct the original vector

Require an auxiliary structure (codebook)




10°

10°

billion-scale

million-scale

Space partition

» k-means

» PQ/OPQ

» Graph traversal
> etc...

~— Inverted index + data compression

Data compression

» Raw data

» Scalar quantization
» PQ/0OPQ

> etc...

v

v

LT[ 1]

»
.

~ For raw data: Acc. ©, Memory: ® =—

Locality Sensitive Hashing (LSH)

Tree / Space Partitioning

Graph traversal

~ For compressed data: Acc. ®, Memory: © ']

0.34
ID: 123
0.71
J
0.22

Look-up-based
0.22

0.68
Hamming-based
0.34

0.68 »

0.71

® ® =] ®

}
}

Linear-scan by
Asymmetric Distance

Linear-scan by
Hamming distance




Inverted index + PQ: Recap the notation

1 10.347 PQ code

0.22 _ A
Product quantization ID: 2

0.68
D102 ) M
0.03 ID: 87 v Bar-notation =
v LO.71- PQ-code

x € RP xe{l,..,256M

> Suppose q,x € RP?, where x is quantized to x
> d(qg,x)? can be efficiently approximated by x:

d(‘l; x)z ~ dA(q; f)z

Just by a PQ-code.

Not the original vector 39



Inverted index + PQ: Record

k=1

k =2
Coarse quantizer

k=K

_—\

Prepare a coarse quantizer
v’ Split the space into K sub-spaces

v {ck}’,§=1 are created by running k-means on training data




Inverted index + PQ: Record

Record x4

Coarse quantizer



Inverted index + PQ: Record

Record x4

Coarse quantizer

92



Inverted index + PQ: Record

Record x4
k=1
k =2
Coarse quantizer
k=K

» €, is closest to x;
» Compute a residual ; between x; and c¢,:
1'1 —_ xl — CZ ( —— )

93



Inverted index + PQ: Record

Coarse quantizer

Record x;

k =

K

» €, is closest to x;
» Compute a residual ; between x; and c¢,:
1'1 —_ xl — CZ ( —— )

» Quantize r, to 1, by PQ
» Record it with the ID, “1”
> i.e., record (i,7;)

D4




Inverted index + PQ: Record

» For all database vectors, record [ID + PQ(res)] as pointing lists
— () (0 ()

k =2 ID: 42 | | ID: 18
ID:37 || ID:4
ID:9 || ID:96

coarse quantizer




Inverted index + PQ: Search

coarse quantizer

ID: 42 ID: 18
ID: 37 ID: 4
ID: 9 ID: 96

96



Inverted index + PQ: Search

Find the nearest vector to cu - () ()

0.54] R
2.35

0.82 @ @

0.42 k =2 ID: 42 | | ID: 18

0.14 ID:37 | | ID:4

'032‘ ID:9 | | ID: 96

coarse quantizer




Inverted index + PQ: Search

Find the nearest vector to cu - () ()

0.54] e
2.35

0.82 @ @

0.42 k =2 ID: 42 | | ID: 18

0.14 ID:37 | | ID:4

'032‘ ID:9 | | ID: 96

coarse quantizer




Inverted index + PQ: Search

Find the nearest vector to Lu

10.547
2.35
0.82
0.42
0.14

L0.32-

coarse quantizer

» C, is the closest to q
» Compute the residual: v, = q — ¢,

=~
1
=

ID: 42 ID: 18
ID: 37 ID: 4
ID: 9 ID: 96
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Inverted index + PQ: Search

Find the nearest vector to cu - () ()

10.547
2.35
0.82
0.42
0.14

L0.32-

coarse quantizer : /\

» Forall (i,7;) ink = 2, compare r; with r:

» C, is the closest to q d(q,x;)* = d(q — ¢z, x; — ¢3)? ,
» Compute the residual: v, = q — ¢, = d(rq,rl-)z ~ dA(rq’Fi)

» Find the smallest one (several strategies)




[ ]
I facebookresearch / faiss @Usedby~ 136 OUnwatch~ | 399 A Unstar | 10k % Fork | 1.8k
a I S S <> Code Issues 45 Pull requests 8 Actions Projects 5 Wiki Security 0 Insights

https://github.com/facebookresearch/faiss
$> conda install faiss-cpu -c pytorch =
$> conda install faiss-gpu -c pytorch -

example_makefiles

»From the original authors of the PQ and a GPU expert, FAIR
» CPU-version: all PQ-based methods
» GPU-version: some PQ-based methods
»Bonus:
» NN (not ANN) is also implemented, and quite fast
»k-means (CPU/GPU). Fast.

Benchmark of k-means:
https://github.com/DwangoMediaVillage/pgkmeans/blob/master/tutorial/4 comparison to faiss.ipynb 101



https://github.com/facebookresearch/faiss
https://github.com/DwangoMediaVillage/pqkmeans/blob/master/tutorial/4_comparison_to_faiss.ipynb

index

index
index
index
dist,

k - 1 ID: 42 ID: 25 ID: 38 ID: 16
ID: 37 ID: 47 ID: 49 ID: 72
ID: 9 ID: 32 ID: 72 ID: 95

coarse quantizer

/ Simple linear scan

quantizer = faiss.IndexFlatL2(D)

= faiss.IndexIVFPQ(quantizer, D, nlist, M, nbits)

|
.train(Xt)

.add(X)
.nprobe = nprobe
ids = index.search(Q, topk)

Usually, 8 bit
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~— Inverted index + data compression

Space partition Data compression

|
|
L » k-means : » Raw data
= » PQ/0OPQ ! » Scalar quantization
O » Graph traversal ! » PQ/OPQ
it > etc... | > etc...
c . :
O — L[ [ [ []
— = — [T 1 1]
o) o :
I
|

~ For compressed data: Acc. ®, Memory: ©

Look-up-based

~ For raw data: Acc. ©, Memory: ® =—

Locality Sensitive Hashing (LSH)

10°

million-scale

Tree / Space Partitioning

Graph traversal

J

0.34
0.22
0.68
0.71

=

® ® =] ®

Hamming-based

}

0.34 _
0.22 » ID: 2 Linear-scan by
8-?? ID: 123 Asymmetric Distance

Linear-scan by
Hamming distance




10.547
2.35
0.82
0.42
0.14

L0.32-

Coarse quantizer

104



10.547
2.35
0.82
0.42
0.14

L0.32-

| Coarse quantizer

d

quantizer = faiss.IndexHNSWFlat(D, hnsw¥m)

index = faiss.IndexIVFPQ(quantizer, D, nlist, M, nbits)

Select a coarse quantizer Usually, 8 bit

»Switch a coarse quantizer from linear-scan to HNSW
»The best approach for billion-scale data as of 2020
»The backbone of [Douze+, CVPR 2018] [Baranchuk+, ECCV 2018] o-



© From the original authors of PQ. Extremely efficient (theory & impl)
© Used in a real-world product (Mercari, etc)

© For billion-scale data, Faiss is the best option

© Especially, large-batch-search is fast; #tquery is large

® Lack of documentation (especially, python binding)
@ Hard for a novice user to select a suitable algorithm
@ As of 2020, anaconda is required. Pip is not supported officially
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Reference
» Faiss wiki: [https://github.com/facebookresearch/faiss/wiki]

» Faiss tips: [https://github.com/matsui528/faiss_tips]

» Julia implementation of lookup-based methods [https://github.com/una-dinosauria/Rayuela.jl]

» PQ paper: H. Jégou et al., “Product quantization for nearest neighbor search,” TPAMI 2011

» IVFADC + HNSW (1): M. Douze et al., “Link and code: Fast indexing with graphs and compact
regression codes,” CVPR 2018

» IVFADC + NHSW (2): D. Baranchuk et al., “Revisiting the Inverted Indices for Billion-Scale
Approximate Nearest Neighbors,” ECCV 2018
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https://github.com/facebookresearch/faiss/wiki
https://github.com/matsui528/faiss_tips
https://github.com/una-dinosauria/Rayuela.jl

cheat-sheet for ANN in Python (as of 2020. Can be installed by conda or pip)

: Exact nearest neighbor search - : If out of GPU-memory, make M smaller :
Jaih L P TS t‘l llllllllllllllllllll = IfoutofGPU memory ‘lllllllllllllllllllllllllll.‘ lllllllllllllllllllll L]

‘ Yes faiss-gpu: linear scan (GpulndexFlatL2) faiss-gpu: ivfpqg (GpulndexIVFPQ)
If topk > 2048 /
| Have GPU(s)? | faiss-cpu: linear scan (IndexFlatL2) gl U €1 SR HMETET, €

No Need more accurate results

Require fast data addition

If slow... ‘

About: 103 < N < 106 _

Would like to run
subset-search

pessssssssssssssssssanssnns e Sfe{aaTa ol If slow, or out Would like to run from
. e . el . several processes
= Alternative: faiss.IndexHNSWFlat in faiss-cpu : of memory

» Same algorithm in different libraries
.............................................. - Would like to adjust

the performance Adjust the IVF parameters:
Make nprobe larger = Higher accuracy but slower
Would like to adjust
the performance
Adjust the PQ parameters: Make M smlaller

Note: Assuming D = 100. The size of the problem is determined by DN. If 100 <« D, run PCA to reduce D to 100

faiss-cpu: hnsw + ivfpq

(IndexHNSWFlat + IndexIVFPQ)

If out of memory



Benchmark 1: ann-benchmarks
» https://github.com/erikbern/ann-benchmarks
» Comprehensive and thorough benchmarks

for various libraries. Docker-based

Recall-Queries per second (1/s) tradeoff - up and to the right is better

10° ]

1_04 i

103 1 =

Queries per second (1/s)

1_02 i

1_01 i

» Top right, the better
» As of June, 2020, NMSLIB and NGT are

competing each other for the first place

\

S

= annoy

=4« BallTree(nmslib)

== pruteforce-blas
faiss-ivf
flann
hnswifaiss)
hnsw{nmslib)

hnswlib
kd

Sk, kgraph
\ mrpt
o

X NGT-onn
Y 9

-l\ | NGT-panng
’ == pynndescent
shidx
1t SW-graph{nmslib)

T T T T
0.0 0.2 0.4 0.6 0.8
Recall

e 109



https://github.com/erikbern/ann-benchmarks

Benchmark 2: annbench

> https://github.com/matsui528/annbench
» Lightweight, easy-to-use

# Install libraries
pip install -r requirements.txt

# Download dataset on ./dataset
python download.py dataset=siftsmall

# Evaluate algos. Results are on ./output
python run.py dataset=siftsmall algo=annoy

# Visualize
python plot.py

query/sec (1/s)

10°

=
o
r

107

siftlm

arch_k:100.. ch k-200 -
= arch_k:400
arch_k:800

—8— annoy(n_trees=200)

—&— annoy(n_trees=400)

—8— hnsw(M=4, ef construction=100})
—8— hnsw(M=32, ef construction=200)
—&— ivfpq(M=8, nlist=1000)

—o— ivfpg(M=16, nlist=1000)

—o— linear()

164

f:25(6

dummy:0

[

# Multi-run by Hydra

python run.py --multirun dataset=siftsmall,siftlm algo=linear,annoy,ivqu,hnsw]

T
0.2

T
0.4

recall@l

T
0.6

T T
0.8 1.0
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https://github.com/matsui528/annbench

Search for a “subset”

— (1) Tag-based search: Target IDs:

tag == “zebra” (125, 223, 365, ...]

_
[ (2) Image search with a query q ]

) 2

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

= I Search E Ranked list dist ID  :
T> ANN system | me—— 13 365 :
126 “elephant” Query vector 0.24 223
125 223, 3695, . 881 :
: TargetIDs :

Subset-search

Y. Matsui+, “Reconfigurable Inverted Index”, ACMMM 18 111



Trillion-scale search: N = 104 (1T)

Sense of scale
> K(= 103) Just in a second on a local machine
> M(= 10°) All data can be on memory. Try several approaches

> G(= 10°) Need to compress data by PQ. Only two datasets are available (SIFT1B, Deep1B)
> T(= 10'?) Cannot even imagine

https://github.com/facebookresearch/faiss/wiki/Indexing-1T-vectors
https://github.com/facebookresearch/faiss/
wiki/Indexing-1T-vectors
» Only in Faiss wiki @\
» Distributed, mmap, etc.

_ FALSS
> L :“L\(L@x ¢ odd

\ J Ao
|
IHENE

0% > >
- 201 15T

A sparse matrix of 15 Exa elements?

112


https://github.com/facebookresearch/faiss/wiki/Indexing-1T-vectors

Nearest neighbor search engine: something like ANN + SQL

» The algorithm inside is faiss, nmslib, or NGT

&) VEARCH $7Y Open st et

https://github.com/vearch/vearch Elasticsearch KNN

https://github.com/opendistro-for-elasticsearch/k-NN

"ﬂi“‘ Vald

https://github.com/vdaas/vald

Milvus

https://github.com/milvus-io/milvus
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https://github.com/vearch/vearch
https://github.com/milvus-io/milvus
https://github.com/opendistro-for-elasticsearch/k-NN
https://github.com/vdaas/vald

Problems of ANN

» No mathematical background.
v" Only actual measurements matter: recall and runtime
v" The ANN problem was mathematically defined 10+ years ago (LSH), but recently no
one cares the definition.

» Thus, when the score is high, it’s not clear the reason:
v" The method is good?
v' The implementation is good?
v Just happens to work well for the target dataset?
v E.g.: The difference of math library (OpenBLAS vs Intel MKL) matters.

» |If one can explain “why this approach works good for this dataset”, it would be a great
contribution to the field.

» Not enough dataset. Currently, only two datasets are available for billion-scale data:
SIFT1B and Deep1B



cheat-sheet for ANN in Python (as of 2020. Can be installed by conda or pip)

: Exact nearest neighbor search - : If out of GPU-memory, make M smaller :
Jaih L P TS t‘l llllllllllllllllllll = IfoutofGPU memory ‘lllllllllllllllllllllllllll.‘ lllllllllllllllllllll L]

‘ Yes faiss-gpu: linear scan (GpulndexFlatL2) faiss-gpu: ivfpqg (GpulndexIVFPQ)
If topk > 2048 /
| Have GPU(s)? | faiss-cpu: linear scan (IndexFlatL2) gl U €1 SR HMETET, €

No Need more accurate results

Require fast data addition

If slow... ‘

About: 103 < N < 106 _

Would like to run
subset-search

pessssssssssssssssssanssnns e Sfe{aaTa ol If slow, or out Would like to run from
. e . el . several processes
= Alternative: faiss.IndexHNSWFlat in faiss-cpu : of memory

» Same algorithm in different libraries
.............................................. - Would like to adjust

the performance Adjust the IVF parameters:
Make nprobe larger = Higher accuracy but slower
Would like to adjust
the performance
Adjust the PQ parameters: Make M smlaller

Note: Assuming D = 100. The size of the problem is determined by DN. If 100 <« D, run PCA to reduce D to 100

faiss-cpu: hnsw + ivfpq

(IndexHNSWFlat + IndexIVFPQ)

If out of memory



