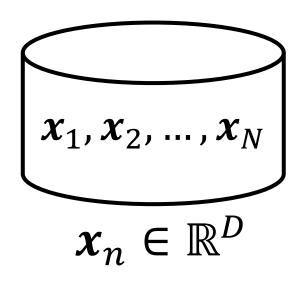


Billion-scale Approximate Nearest Neighbor Search

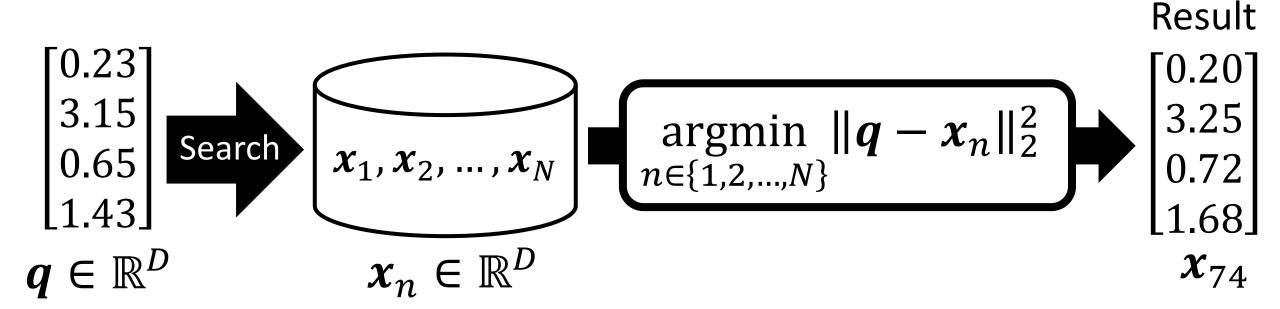
Yusuke Matsui
The University of Tokyo

Nearest Neighbor Search; NN



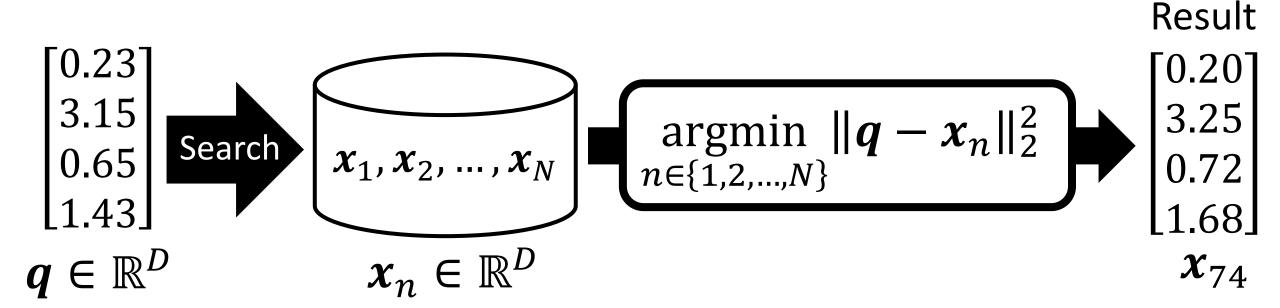
> N D-dim database vectors: $\{x_n\}_{n=1}^N$

Nearest Neighbor Search; NN



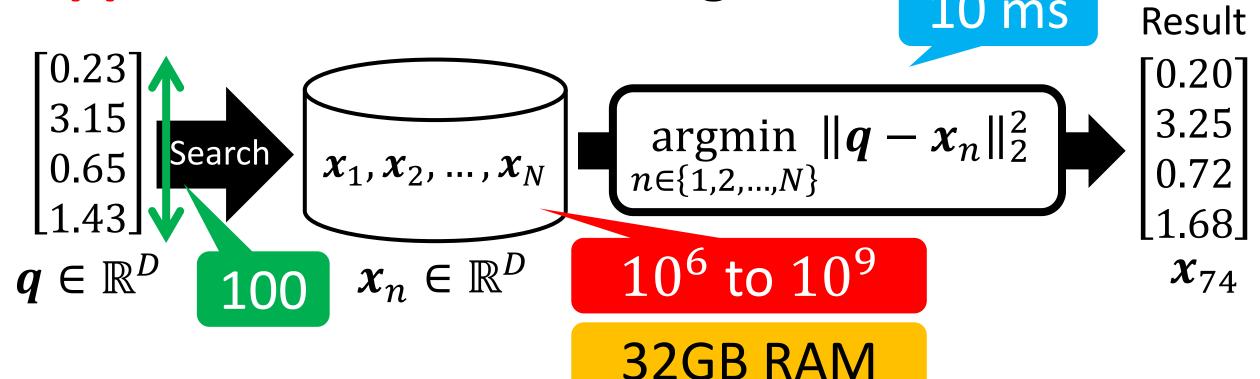
- > N D-dim database vectors: $\{x_n\}_{n=1}^N$
- \triangleright Given a query q, find the closest vector from the database
- ➤ One of the fundamental problems in computer science
- ➤ Solution: linear scan, O(ND), slow \otimes

Approximate Nearest Neighbor Search; ANN



- > Faster search
- > Don't necessarily have to be exact neighbors
- >Trade off: runtime, accuracy, and memory-consumption

Approximate Nearest Neighbor Sparch, ANN

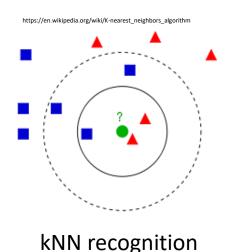


- > Faster search
- > Don't necessarily have to be exact neighbors
- >Trade off: runtime, accuracy, and memory-consumption
- >A sense of scale: billion-scale data on memory

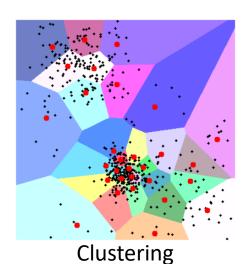
NN/ANN for CV

https://about.mercari.com/press/news/article/20190318_image_search/

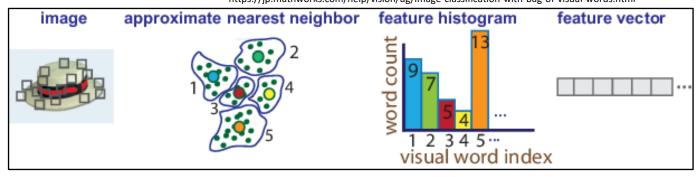
Image retrieval



Person Re-identification

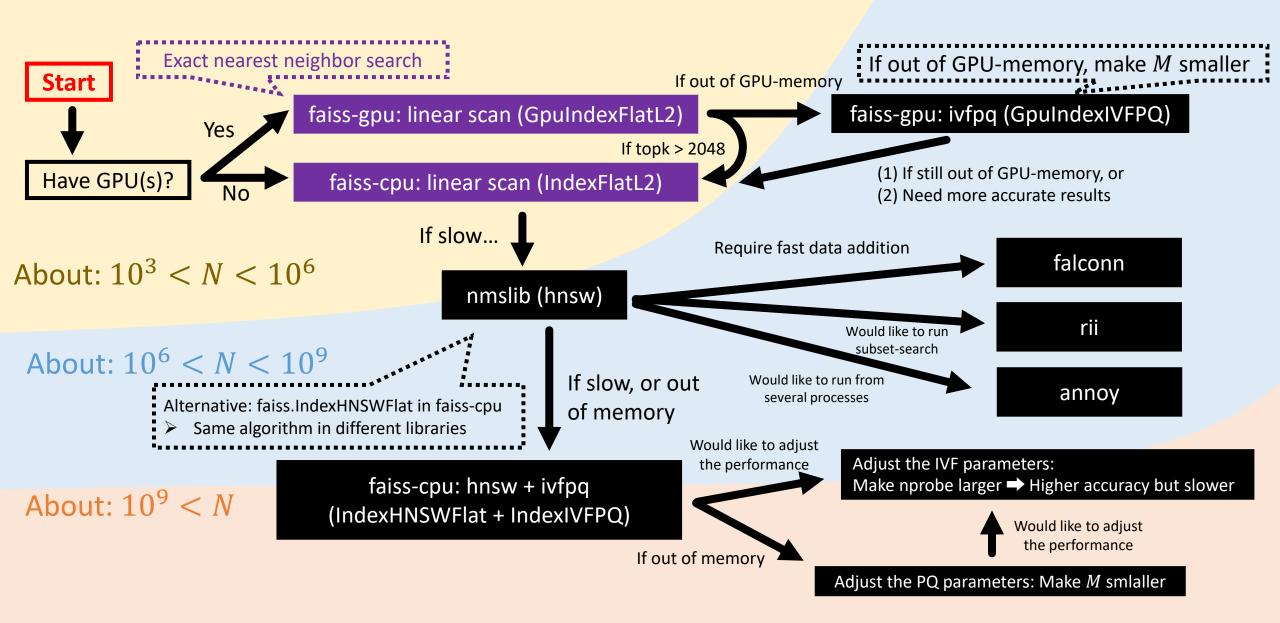


https://jp.mathworks.com/help/vision/ug/image-classification-with-bag-of-visual-words.html



- ➤ Originally: fast construction of bag-of-features
- > One of the benchmarks is still SIFT

cheat-sheet for ANN in Python (as of 2020. Can be installed by conda or pip)



Note: Assuming $D \cong 100$. The size of the problem is determined by DN. If $100 \ll D$, run PCA to reduce D to 100 - 7

<u>Part 1:</u>

Nearest Neighbor Search

<u>Part 2:</u>

Approximate Nearest Neighbor Search

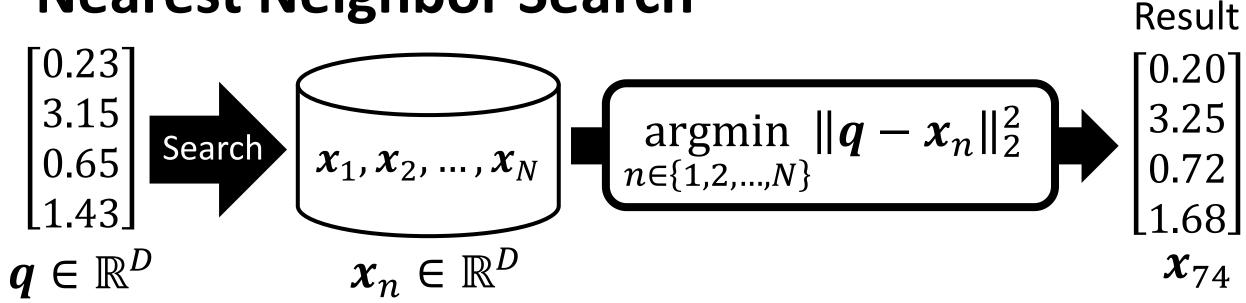
<u>Part 1:</u>

Nearest Neighbor Search

Part 2:

Approximate Nearest Neighbor Search

Nearest Neighbor Search



- ➤ Should try this first of all
- ➤ Introduce a naïve implementation
- ➤ Introduce a fast implementation
 - ✓ Faiss library from FAIR (you'll see many times today. CPU & GPU)
- Experience the drastic difference between the two impls

M D-dim query vectors $Q=\{q_1,q_2,...,q_M\}$ N D-dim database vectors $\mathcal{X}=\{x_1,x_2,...,x_N\}$ $M\ll N$ Task: Given $q\in Q$ and $x\in \mathcal{X}$, compute $\|q-x\|_2^2$

M D-dim query vectors

$$Q = \{\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_M\}$$

$$N$$
 D -dim database vectors $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ $M \ll N$

Task: Given $q \in Q$ and $x \in \mathcal{X}$, compute $||q - x||_2^2$

Naïve impl.

```
def 12sqr(q, x):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (q[d] - x[d])**2
  return diff
```

```
parfor q in Q:
                             Parallelize
  for x in X:
                             query-side
     12sqr(q, x) Select min by heap,
                         but omit it now
```

M D-dim query vectors

$$Q = \{\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_M\}$$

N D-dim database vectors $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ $M \ll N$

$$\mathcal{X} = \{x_1, x_2, \dots, x_N\}$$

Task: Given $q \in Q$ and $x \in \mathcal{X}$, compute $||q - x||_2^2$

```
Naïve impl.
```

```
def 12sqr(q, x):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (q[d] - x[d])**2
  return diff
```

```
parfor q in Q:
                                 Parallelize
 for x in X:
                                query-side
     12sqr(q, x) Select min by heap, but omit it now
```

faiss impl.

if M < 20:

compute $||q - x||_2^2$ by SIMD

else:

compute
$$||q - x||_2^2 = ||q||_2^2 - 2q^Tx + ||x||_2^2$$
 by BLAS

M D-dim query vectors

$$Q = \{q_1, q_2, ..., q_M\}$$

N D-dim database vectors $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ $M \ll N$

Task: Given $q \in Q$ and $x \in \mathcal{X}$, compute $||q - x||_2^2$

```
Naïve impl.
```

```
def 12sqr(q, x):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (q[d] - x[d])**2
  return diff
```

```
parfor q in Q:
                                 Parallelize
 for x in X:
                                query-side
     12sqr(q, x) Select min by heap, but omit it now
```

faiss impl.

if M < 20:

compute $||q - x||_2^2$ by SIMD

else:

compute
$$\|q - x\|_2^2 = \|q\|_2^2 - 2q^Tx + \|x\|_2^2$$
 by BLAS

```
\|x-y\|_2^2 by SIMD
```

Rename variables for the sake of explanation

```
float fvec_L2sqr (const float * x,
                  const float * y,
                  size t d)
    <u>__m256</u> msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 \text{ mx} = mm256 \text{ loadu ps } (x); x += 8;
        _{m256} \text{ my} = _{mm256} \text{loadu_ps (y); y += 8;}
        const _{m256} a_{mb1} = mx - my;
        msum1 += a_m_b1 * a_m_b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
    msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        _{m128} mx = _{mm} loadu ps (x); x += 4;
        m128 \text{ my} = mm \text{ loadu ps (y); y += 4;}
        const m128 a m b1 = mx - my;
        msum2 += a_m b1 * a_m b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        _{m128} my = masked_read (d, y);
        _{m128} a m b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = _mm_hadd_ps (msum2, msum2);
    return _mm_cvtss_f32 (msum2);
```

```
def l2sqr(x, y):
    diff = 0.0
    for (d = 0; d < D; ++d):
        diff += (x[d] - y[d])**2
    return diff</pre>
```

Rename variables for the sake of explanation

MX

```
float fvec_L2sqr (const float * x,
                  const float * y,
                  size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 mx = mm256 loadu ps (x); x += 8;
        m256 \text{ my} = mm256 \text{ loadu ps (y); y += 8;}
        const __m256 a_m_b1 = mx - my;
        msum1 += a m b1 * a m b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
   msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        _{m128} mx = _{mm} loadu ps (x); x += 4;
        _{m128} \text{ my} = _{mm} loadu_ps (y); y += 4;
        const m128 a m b1 = mx - my;
        msum2 += a_m_b1 * a_m_b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        __m128 my = masked_read (d, y);
        _{m128} a m b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = mm hadd ps (msum2, msum2);
    return _mm_cvtss_f32 (msum2);
```

```
def 12sqr(x, y):
    diff = 0.0
    for (d = 0; d < D; ++d):
        diff += (x[d] - y[d])**2
    return diff</pre>
```

float: 32bit

my

- ➤ 256bit SIMD Register
- Process eight floats at once

```
\|x-y\|_2^2 by SIMD
```

Rename variables for the sake of explanation

```
float fvec_L2sqr (const float * x,
                 const float * y,
                 size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 mx = mm256 loadu ps (x); x += 8;
        m256 \text{ my} = mm256\_loadu\_ps (y); y += 8;
        const __m256 a_m_b1 = mx - my;
        msum1 += a m b1 * a m b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
   msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        _{m128} mx = _{mm} loadu ps (x); x += 4;
        _{m128} \text{ my} = _{mm} loadu_ps (y); y += 4;
        const m128 a m b1 = mx - my;
        msum2 += a_m_b1 * a_m_b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        __m128 my = masked_read (d, y);
        _{m128} a m b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = _mm_hadd_ps (msum2, msum2);
    return mm cvtss f32 (msum2);
```

```
D=31

x

y

float: 32bit

mx

my
```

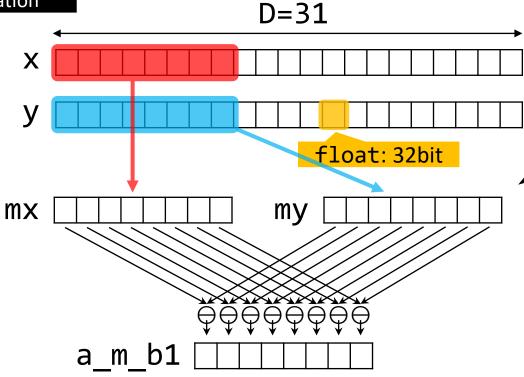
def 12sqr(x, y):
 diff = 0.0
 for (d = 0; d < D; ++d):
 diff += (x[d] - y[d])**2
 return diff</pre>

- ➤ 256bit SIMD Register
- Process eight floats at once

```
\|x-y\|_2^2 by SIMD
```

Rename variables for the sake of explanation

```
float fvec_L2sqr (const float * x,
                  const float * y,
                  size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 mx = mm256 loadu ps (x); x += 8;
        m256 \text{ my} = mm256\_loadu\_ps (y); y += 8;
        const _{m256} a_{m}b1 = mx - my;
        msum1 += a m b1 * a m b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
    msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        _{m128} mx = _{mm} loadu ps (x); x += 4;
        _{m128} \text{ my} = _{mm} loadu_ps (y); y += 4;
        const _{m128} a _{m} b1 = mx - my;
        msum2 += a_m_b1 * a_m_b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        __m128 my = masked_read (d, y);
        _{m128} a m b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = _mm_hadd_ps (msum2, msum2);
    return _mm_cvtss_f32 (msum2);
```

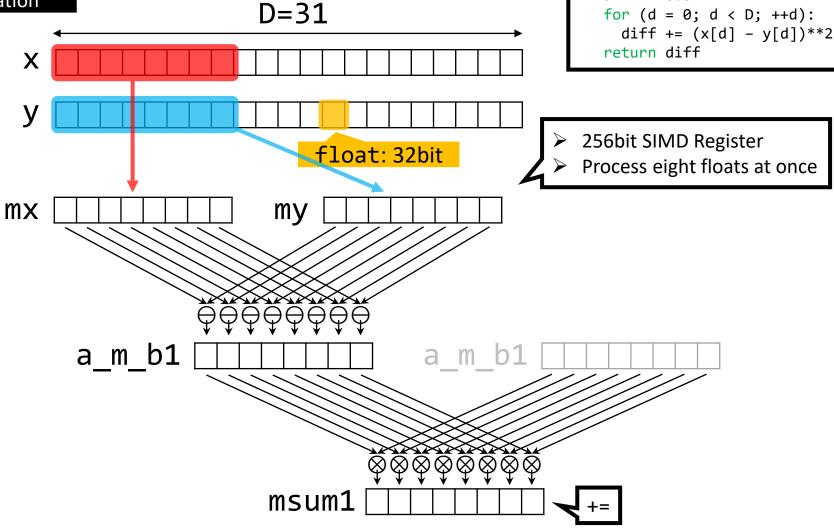


def l2sqr(x, y):
 diff = 0.0
 for (d = 0; d < D; ++d):
 diff += (x[d] - y[d])**2
 return diff</pre>

- ➤ 256bit SIMD Register
- Process eight floats at once

Rename variables for the sake of explanation

```
float fvec_L2sqr (const float * x,
                  const float * y,
                  size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 mx = _mm256_loadu_ps (x); x += 8;
        m256 \text{ my} = mm256\_loadu\_ps (y); y += 8;
        const __m256 a_m_b1 = mx - my;
        msum1 += a m b1 * a m b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
    msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        _{m128} mx = _{mm} loadu ps (x); x += 4;
        _{m128} \text{ my} = _{mm} loadu_ps (y); y += 4;
        const _{m128} a _{m} b1 = mx - my;
        msum2 += a_m_b1 * a_m_b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        _{m128} my = masked_read (d, y);
        _{m128} a _{m} b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = _mm_hadd_ps (msum2, msum2);
    return _mm_cvtss_f32 (msum2);
```



Ref.

def l2sqr(x, y):
 diff = 0.0

Rename variables for the sake of explanation

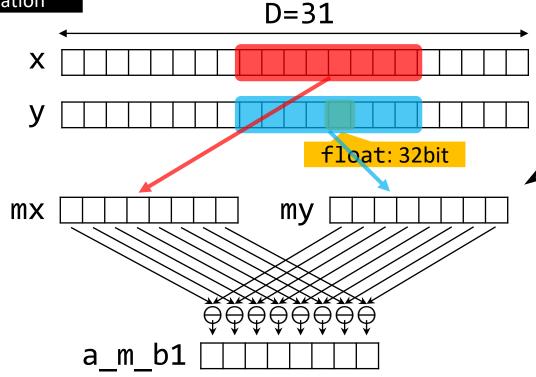
```
float fvec_L2sqr (const float * x,
                 const float * y,
                 size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 mx = mm256 loadu ps (x); x += 8;
        m256 \text{ my} = mm256 loadu ps (y); y += 8;
        const _{m256} a_{mb1} = mx - my;
        msum1 += a m b1 * a m b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
   msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        m128 mx = _mm_loadu_ps (x); x += 4;
        m128 \text{ my} = mm \text{ loadu ps (y); y += 4;}
        const m128 a m b1 = mx - my;
        msum2 += a_m_b1 * a_m_b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        __m128 my = masked_read (d, y);
        _{m128} a _{m} b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = mm hadd ps (msum2, msum2);
    return mm cvtss f32 (msum2);
```

def 12sqr(x, y):
 diff = 0.0
 for (d = 0; d < D; ++d):
 diff += (x[d] - y[d])**2
 return diff</pre>

- ➤ 256bit SIMD Register
- Process eight floats at once

Rename variables for the sake of explanation

```
float fvec_L2sqr (const float * x,
                  const float * y,
                 size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 mx = mm256 loadu ps (x); x += 8;
        m256 \text{ my} = mm256\_loadu\_ps (y); y += 8;
        const __m256 a_m_b1 = mx - my;
        msum1 += a m b1 * a m b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
    msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        _{m128} mx = _{mm} loadu ps (x); x += 4;
        _{m128} \text{ my} = _{mm} loadu_ps (y); y += 4;
        const m128 a m b1 = mx - my;
        msum2 += a_m_b1 * a_m_b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        __m128 my = masked_read (d, y);
        _{m128} a _{m} b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = _mm_hadd_ps (msum2, msum2);
    return _mm_cvtss_f32 (msum2);
```

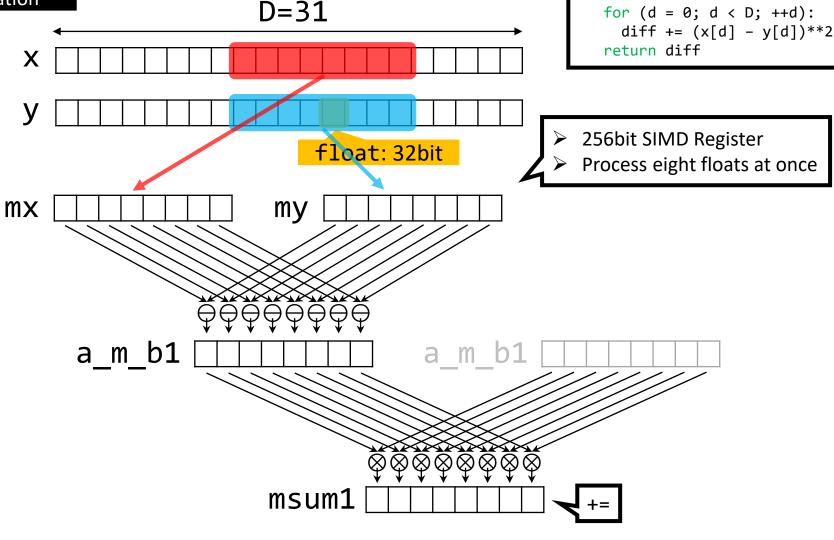


def 12sqr(x, y):
 diff = 0.0
 for (d = 0; d < D; ++d):
 diff += (x[d] - y[d])**2
 return diff</pre>

- ➤ 256bit SIMD Register
- Process eight floats at once

Rename variables for the sake of explanation

```
float fvec_L2sqr (const float * x,
                  const float * y,
                  size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 mx = _mm256_loadu_ps (x); x += 8;
        m256 \text{ my} = mm256\_loadu\_ps (y); y += 8;
        const __m256 a_m_b1 = mx - my;
        msum1 += a m b1 * a m b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
    msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        _{m128} mx = _{mm} loadu ps (x); x += 4;
        _{m128} \text{ my} = _{mm} loadu_ps (y); y += 4;
        const _{m128} a _{m} b1 = mx - my;
        msum2 += a_m_b1 * a_m_b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        _{m128} my = masked_read (d, y);
        _{m128} a _{m} b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = _mm_hadd_ps (msum2, msum2);
    return _mm_cvtss_f32 (msum2);
```

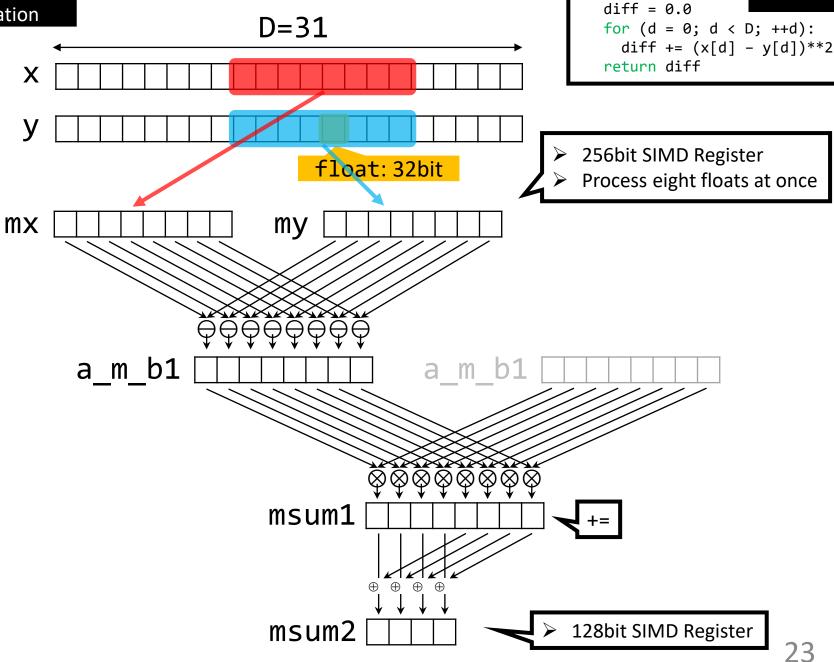


Ref.

def l2sqr(x, y):
 diff = 0.0

Rename variables for the sake of explanation

```
float fvec_L2sqr (const float * x,
                  const float * y,
                  size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 \text{ mx} = mm256 \text{ loadu ps } (x); x += 8;
        _{m256} \text{ my} = _{mm256} \text{loadu ps (y); y += 8;}
        const _{m256} a_{mb1} = mx - my;
        msum1 += a_m_b1 * a_m_b1;
        d = 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1)};
    msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        _{m128} mx = _{mm} loadu ps (x); x += 4;
        _{m128} \text{ my} = _{mm} loadu_ps (y); y += 4;
        const _{m128} a _{m} b1 = mx - my;
        msum2 += a_m_b1 * a_m_b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        _{m128} my = masked_read (d, y);
        _{m128} a _{m} b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = _mm_hadd_ps (msum2, msum2);
    return _mm_cvtss_f32 (msum2);
```



Ref.

Rename variables for the sake of explanation

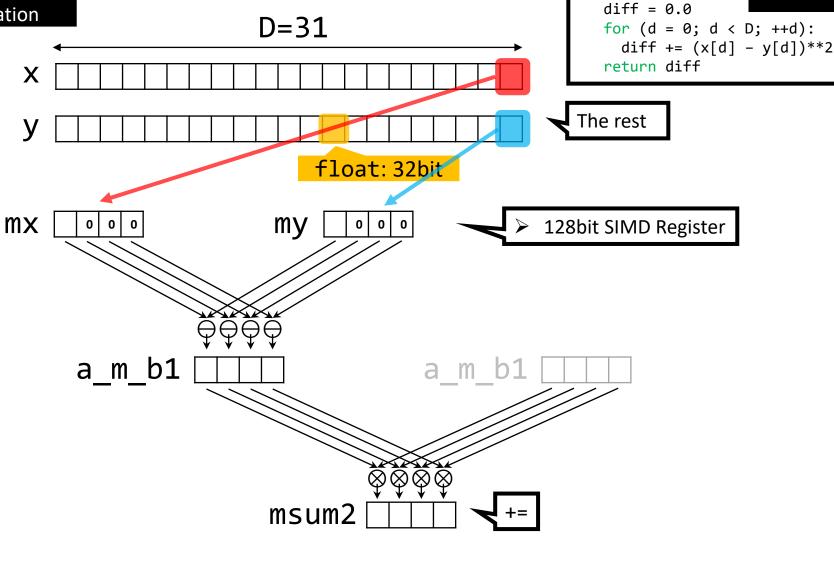
```
float fvec_L2sqr (const float * x,
                  const float * y,
                  size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 \text{ mx} = mm256 \text{ loadu ps } (x); x += 8;
        _{m256} \text{ my} = _{mm256} \text{loadu_ps (y); y += 8;}
        const _{m256} a_{mb1} = mx - my;
        msum1 += a_m_b1 * a_m_b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
    msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        m128 mx = mm loadu ps (x); x += 4;
        _{m128} \text{ my} = _{mm} \text{loadu_ps (y); y += 4;}
        const m128 a m b1 = mx - my;
        msum2 += a m b1 * a m b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        __m128 my = masked_read (d, y);
        _{m128} a m b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = _mm_hadd_ps (msum2, msum2);
    return _mm_cvtss_f32 (msum2);
```

```
diff = 0.0
                           D = 31
                                                               for (d = 0; d < D; ++d):
                                                                 diff += (x[d] - y[d])**2
                                                               return diff
                                 float: 32bit
MX
                            my
                                                        128bit SIMD Register
                    \Theta \Theta \Theta \Theta
       a m b1
                                      msum2
```

Ref.

Rename variables for the sake of explanation

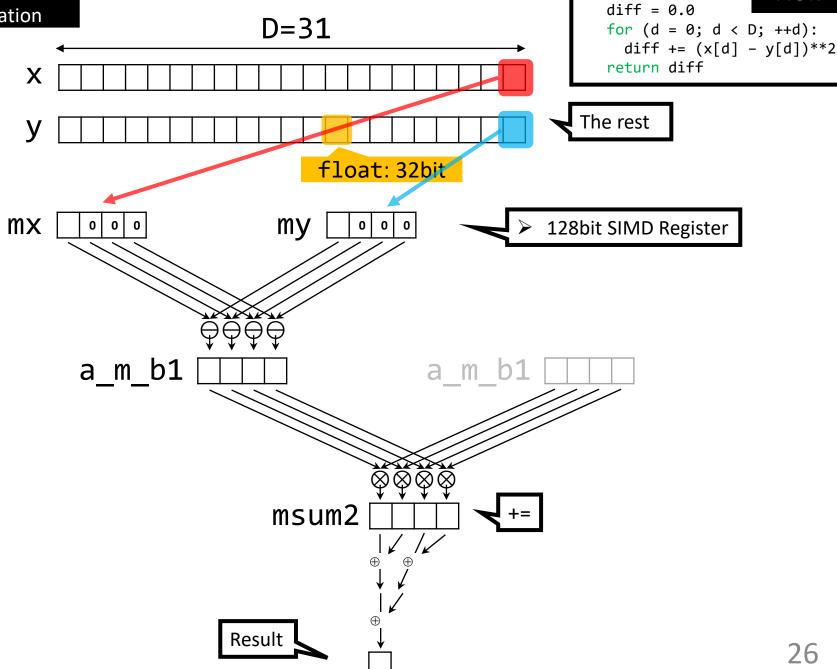
```
float fvec_L2sqr (const float * x,
                  const float * y,
                  size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 \text{ mx} = mm256 \text{ loadu ps } (x); x += 8;
        _{m256} \text{ my} = _{mm256} \text{loadu ps (y); y += 8;}
        const _{m256} a_{mb1} = mx - my;
        msum1 += a_m_b1 * a_m_b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
    msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        _{m128} mx = _{mm} loadu ps (x); x += 4;
        _{m128} \text{ my} = _{mm} loadu_ps (y); y += 4;
        const m128 a m b1 = mx - my;
        msum2 += a_m_b1 * a_m_b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        __m128 my = masked_read (d, y);
        m128 \ a \ m \ b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = mm hadd ps (msum2, msum2);
    return mm cvtss f32 (msum2);
```



Ref.

Rename variables for the sake of explanation

```
float fvec_L2sqr (const float * x,
                  const float * y,
                  size t d)
    __m256 msum1 = _mm256_setzero_ps();
    while (d >= 8) {
        m256 \text{ mx} = mm256 \text{ loadu ps } (x); x += 8;
        _{m256} \text{ my} = _{mm256} \text{loadu_ps (y); y += 8;}
        const _{m256} a_{mb1} = mx - my;
        msum1 += a_m_b1 * a_m_b1;
        d -= 8;
    m128 \text{ msum2} = mm256 \text{ extractf128 ps(msum1, 1);}
    msum2 += _mm256_extractf128_ps(msum1, 0);
    if (d >= 4) {
        _{m128} mx = _{mm} loadu ps (x); x += 4;
        _{m128} \text{ my} = _{mm} loadu_ps (y); y += 4;
        const _{m128} a _{m} b1 = mx - my;
        msum2 += a_m_b1 * a_m_b1;
        d -= 4;
    if (d > 0) {
        m128 mx = masked_read(d, x);
        _{m128} my = masked_read (d, y);
        _{m128} a m b1 = mx - my;
        msum2 += a m b1 * a m b1;
    msum2 = _mm_hadd_ps (msum2, msum2);
    msum2 = _mm_hadd_ps (msum2, msum2);
    return mm cvtss f32 (msum2);
```



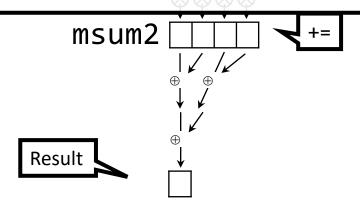
Ref.

- SIMD codes of faiss are simple and easy to read
- Being able to read SIMD codes comes in handy sometimes; why this implies super fast
- ➤ Another example of SIMD L2sqr from HNSW:

https://github.com/nmslib/hnswlib/blob/master/hnswlib/space 12.h

```
__m128 mx = masked_read (d, x);
    __m128 my = masked_read (d, y);
    __m128 a_m_b1 = mx - my;
    msum2 += a_m_b1 * a_m_b1;
}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss_f32 (msum2);
```



```
M D-dim query vectors \mathcal{Q} = \{q_1, q_2, ..., q_M\} N D-dim database vectors \mathcal{X} = \{x_1, x_2, ..., x_N\}
```

Task: Given $q \in Q$ and $x \in \mathcal{X}$, compute $||q - x||_2^2$

```
Naïve impl. def 12sqr(q, x):
    diff = 0.0
    for (d = 0; d < D; ++d):
        diff += (q[d] - x[d])**2
    return diff
```

faiss impl.

if M < 20: compute $\|\boldsymbol{q} - \boldsymbol{x}\|_2^2$ by SIMD else:

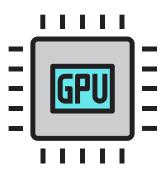
compute
$$\|\boldsymbol{q} - \boldsymbol{x}\|_2^2 = \|\boldsymbol{q}\|_2^2 - 2\boldsymbol{q}^{\mathsf{T}}\boldsymbol{x} + \|\boldsymbol{x}\|_2^2$$
 by BLAS

```
Compute \|q - x\|_2^2 = \|q\|_2^2 - 2q^Tx + \|x\|_2^2 with BLAS
Stack M D-dim query vectors to a D \times M matrix: Q = [q_1, q_2, ..., q_M] \in \mathbb{R}^{D \times M}
Stack N D-dim database vectors to a D \times N matrix: X = [x_1, x_2, ..., x_N] \in \mathbb{R}^{D \times N}
# Compute tables SIMD-accelerated function
q_norms = norms(Q) # ||q_1||_2^2, ||q_2||_2^2, ..., ||q_M||_2^2
x_{norms} = norms(X) # ||x_1||_2^2, ||x_2||_2^2, ..., ||x_N||_2^2
ip = sgemm_(Q, X, ...) # Q
                                           > Matrix multiplication by BLAS
                                            \triangleright Dominant if Q and X are large
# Scan and sum
                                            > The difference of the background matters:
parfor (m = 0; m < M; ++m):
                                            ✓ Intel MKL is 30% faster than OpenBLAS
   for (n = 0; n < N; ++n):
      dist = q_norms[m] + x_norms[n] - ip[m][n]
```

NN in GPU (faiss-gpu) is 10x faster than NN in CPU (faiss-cpu)

Benchmark: https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks

- \triangleright NN-GPU always compute $\|\boldsymbol{q}\|_2^2 2\boldsymbol{q}^{\mathsf{T}}\boldsymbol{x} + \|\boldsymbol{x}\|_2^2$
- ➤ k-means for 1M vectors (D=256, K=20000)
- ✓ 11 min on CPU
- ✓ 55 sec on 1 Pascal-class P100 GPU (float32 math)
- √ 34 sec on 1 Pascal-class P100 GPU (float16 math)
- ✓ 21 sec on 4 Pascal-class P100 GPUs (float32 math)
- √ 16 sec on 4 Pascal-class P100 GPUs (float16 math)



- > If GPU is available and its memory is enough, try GPU-NN
- > The behavior is little bit different (e.g., a restriction for top-k)

Reference

> Switch implementation of L2sqr in faiss:

[https://github.com/facebookresearch/faiss/wiki/Implementation-notes#matrix-multiplication-to-do-many-l2-distance-computations]

- Introduction to SIMD: a lecture by Markus Püschel (ETH) [How to Write Fast Numerical Code Spring 2019], especially [SIMD vector instructions]
 - ✓ https://acl.inf.ethz.ch/teaching/fastcode/2019/
 - √ https://acl.inf.ethz.ch/teaching/fastcode/2019/slides/07-simd.pdf
- > SIMD codes for faiss [https://github.com/facebookresearch/faiss/blob/master/utils/distances_simd.cpp]
- L2sqr benchmark including AVX512 for faiss-L2sqr

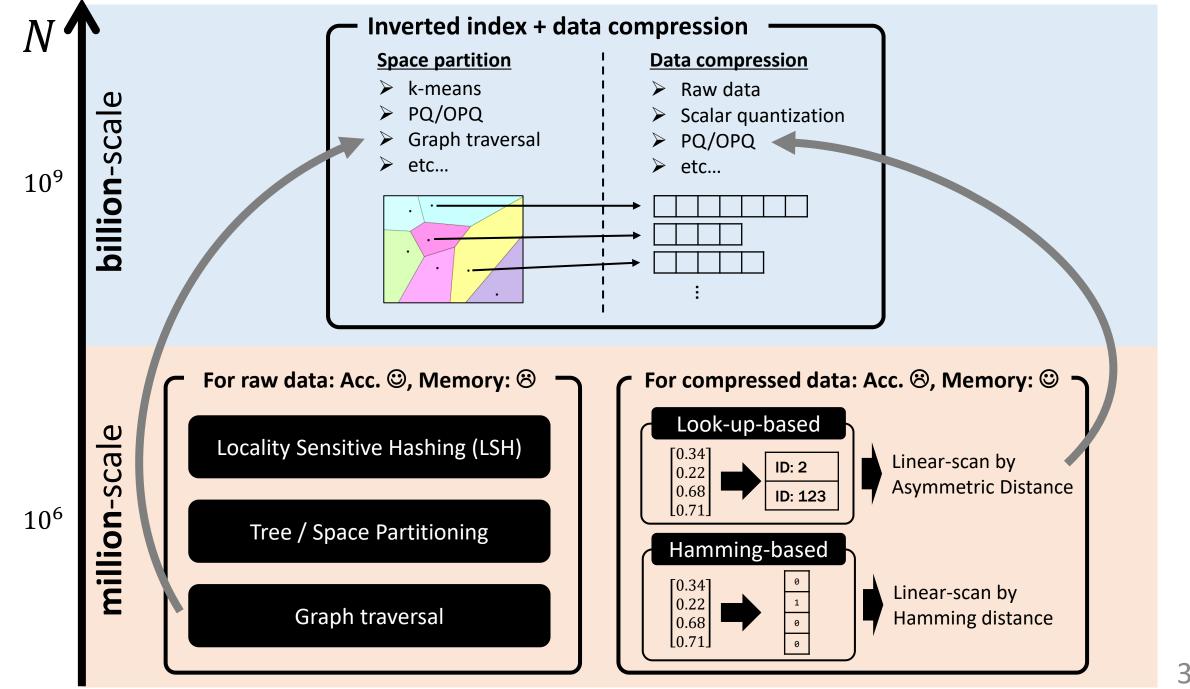
[https://gist.github.com/matsui528/583925f88fcb08240319030202588c74]

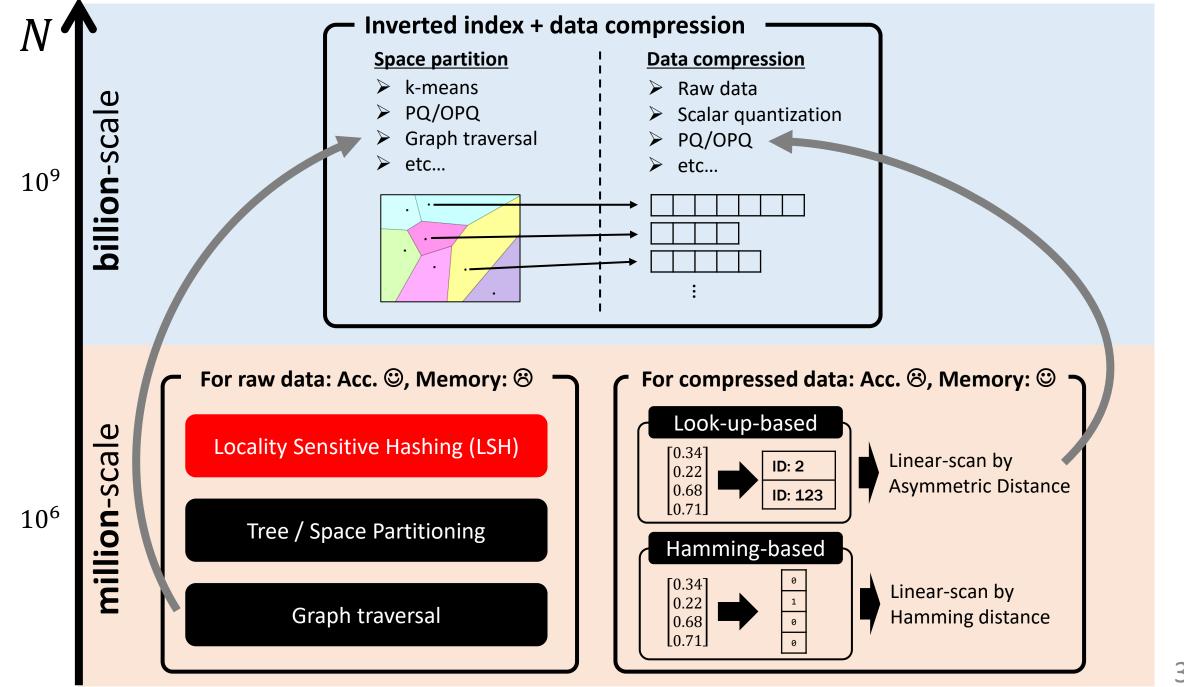
<u>Part 1:</u>

Nearest Neighbor Search

<u>Part 2:</u>

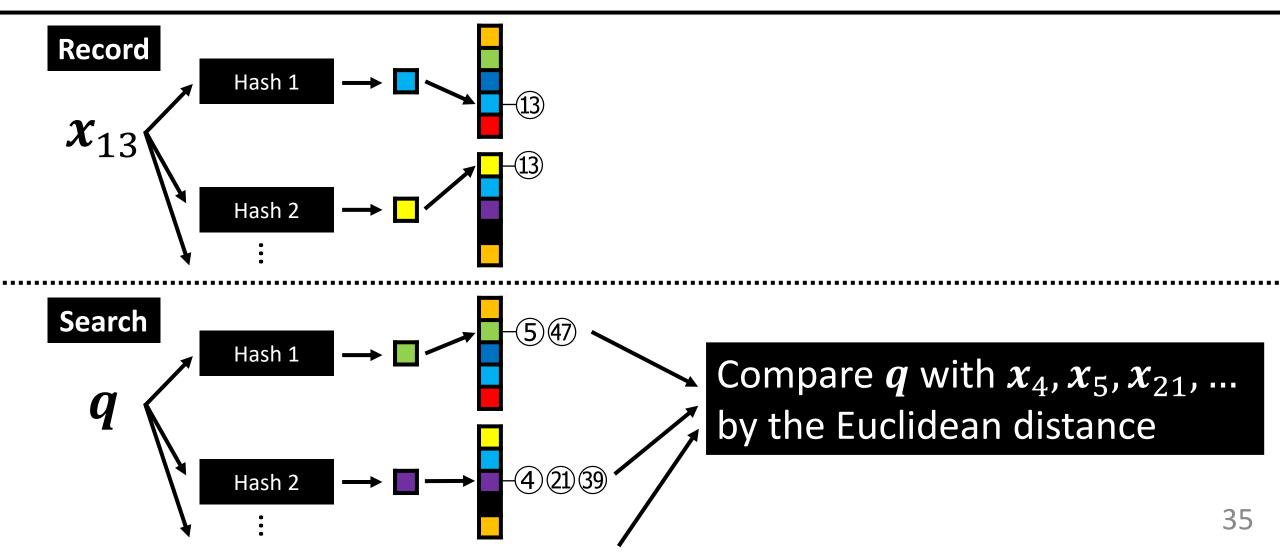
Approximate Nearest Neighbor Search





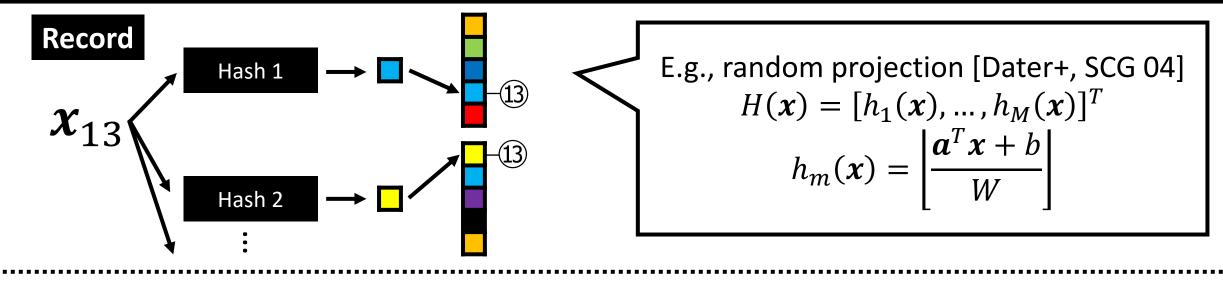
Locality Sensitive Hashing (LSH)

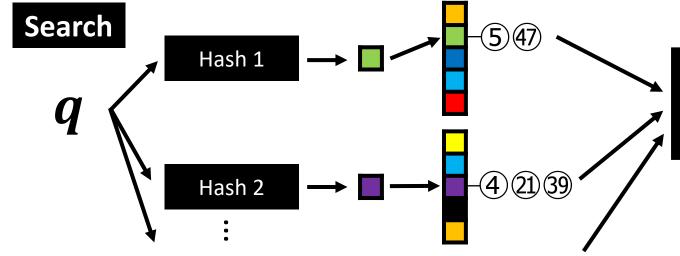
- > LSH = Hash functions + Hash tables
- > Map similar items to the same symbol with a high probability



Locality Sensitive Hashing (LSH)

- > LSH = Hash functions + Hash tables
- Map similar items to the same symbol with a high probability

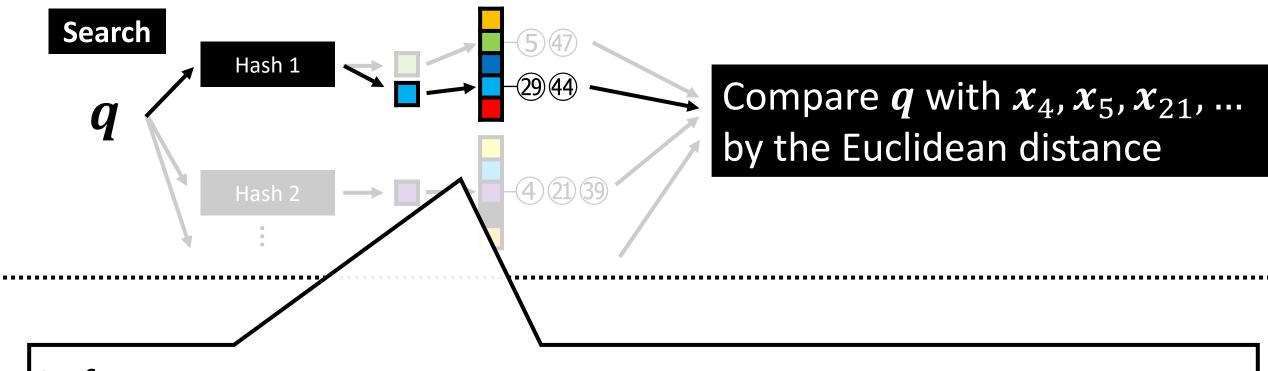




Compare q with $x_4, x_5, x_{21}, ...$ by the Euclidean distance

Locality Sensitive Hashing (LSH)

- > ISH Hach functions + Hach tables
- :Map similar items to the same symbol with a high probability
- Math-friendly
- Popular in the theory area (FOCS, STOC, ...) projection [Dater+, SCG 04]
- **:**
- Large memory cost
 - ✓ Need several tables to boost the accuracy
 - ✓ Need to store the original data, $\{x_n\}_{n=1}^N$, on memory
- Data-dependent methods such as PQ are better for real-world data
- ➤ Thus, in recent CV papers, LSH has been treated as a classic-method ⊗⊗⊗



In fact:

- Consider a next candidate → practical memory consumption (Multi-Probe [Lv+, VLDB 07])
- > A library based on the idea: FALCONN

Falconn

https://github.com/falconn-lib/falconn

\$> pip install FALCONN

```
table = falconn.LSHIndex(params_cp)
table.setup(X-center)
query_object = table.construct_query_object()
# query parameter config here
query_object.find_nearest_neighbor(Q-center, topk)
```

- © Faster data addition (than annoy, nmslib, ivfpq)
- Useful for on-the-fly addition
- Parameter configuration seems a bit non-intuitive

☐ FALCONN-LIB / FALCONN

⟨> Code () Issues 51 () Pull requests 0 (> Actions () Projects 0 () Wiki () Security 0 (> Insight

moved the GloVe example to the 'src' directory

A number of major changes implemented by Alejandro Cassis, Ilya Raze

A number of major changes implemented by Alejandro Cassis, Ilva Razen.,

 $\bigstar 852$

2 years ago

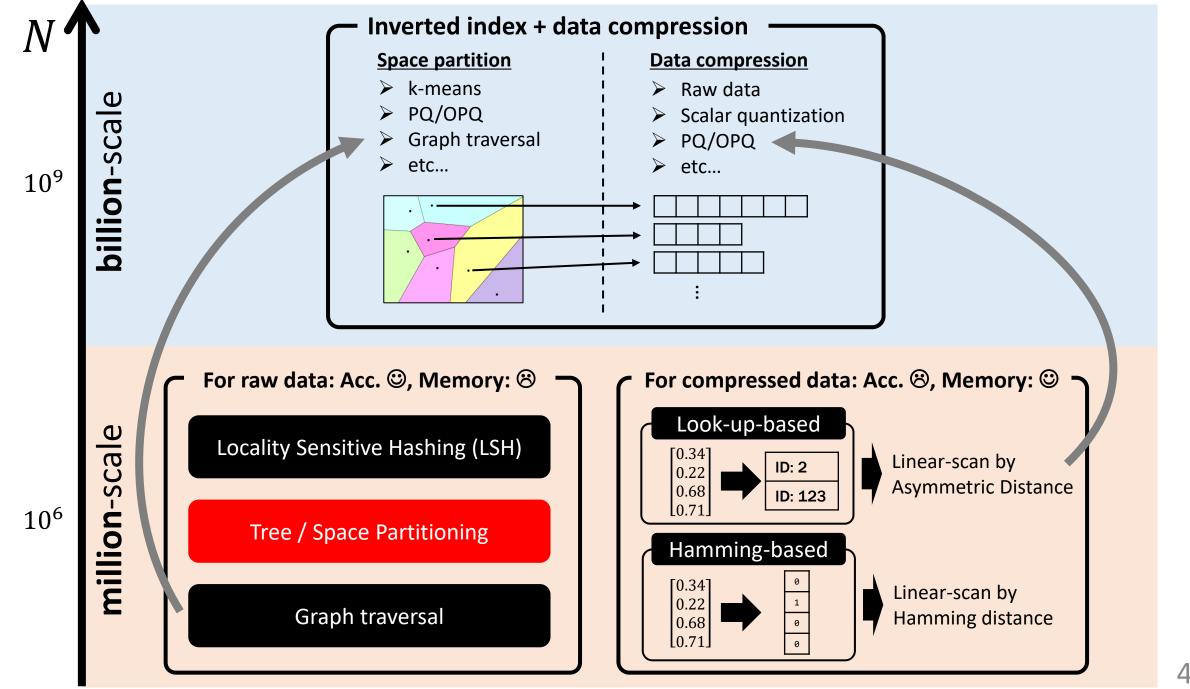
4 years ago

5 years ago

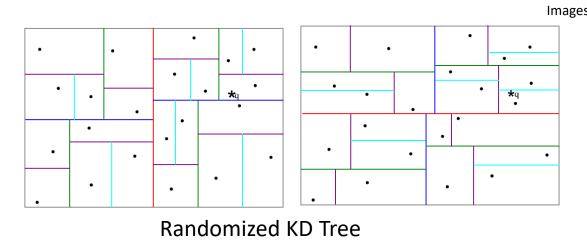
2 years ago

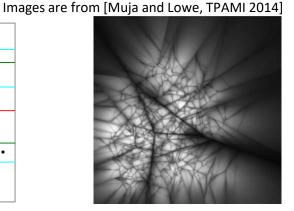
Reference

- Good summaries on this field: CVPR 2014 Tutorial on Large-Scale Visual Recognition, Part I: Efficient matching, H. Jégou [https://sites.google.com/site/lsvrtutorialcvpr14/home/efficient-matching]
- Practical Q&A: FAQ in Wiki of FALCONN [https://github.com/FALCONN-LIB/FALCONN/wiki/FAQ]
- ➤ Hash functions: M. Datar et al., "Locality-sensitive hashing scheme based on p-stable distributions," SCG 2004.
- Multi-Probe: Q. Lv et al., "Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search", VLDB 2007
- Survey: A. Andoni and P. Indyk, "Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions," Comm. ACM 2008



FLANN: Fast Library for Approximate Nearest Neighbors





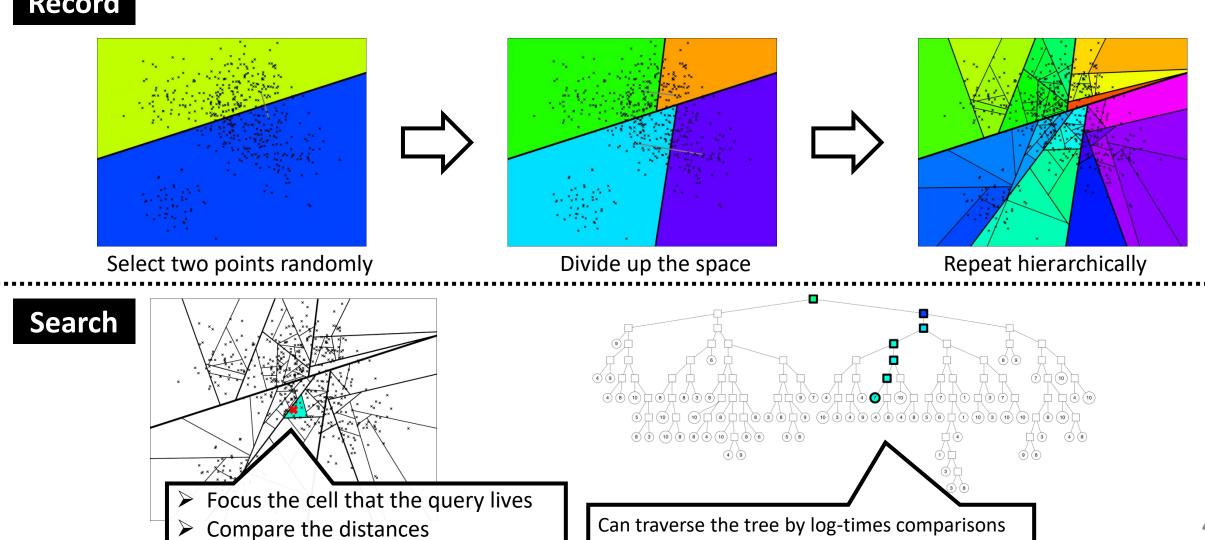
k-means Tree

- ➤ Automatically select "Randomized KD Tree" or "k-means Tree" https://github.com/mariusmuja/flann
- © Good code base. Implemented in OpenCV and PCL
- © Very popular in the late 00's and early 10's
- Large memory consumption. The original data need to be stored
- Not actively maintained now

Annoy

"2-means tree"+ "multiple-trees" + "shared priority queue"

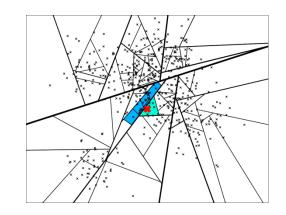
Record

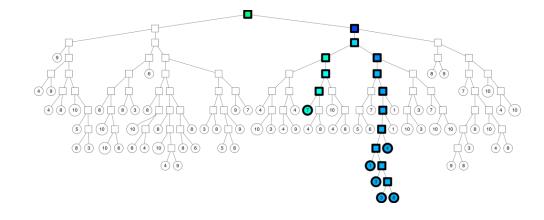


Annoy

"2-means tree"+ "multiple-trees" + "shared priority queue"

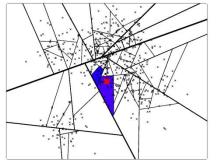
Feature 1 If we need more data points, use a priority queue

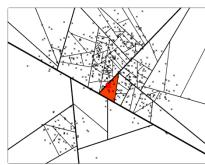


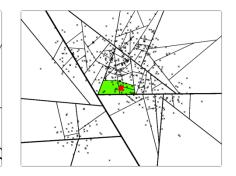


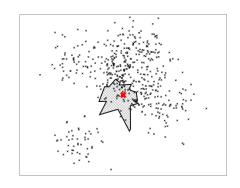
Feature 2

Boost the accuracy by multi-tree with a shared priority queue









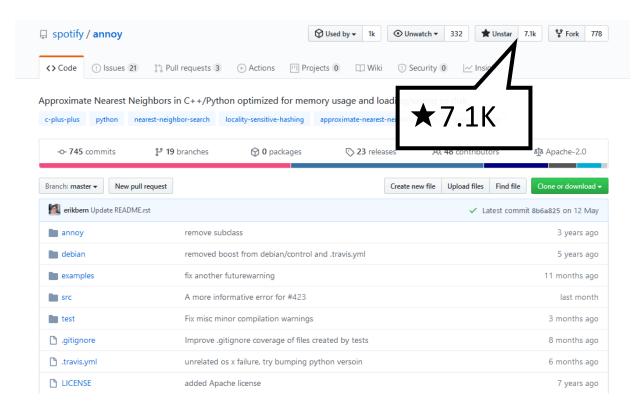
Annoy

https://github.com/erikbern/annoy

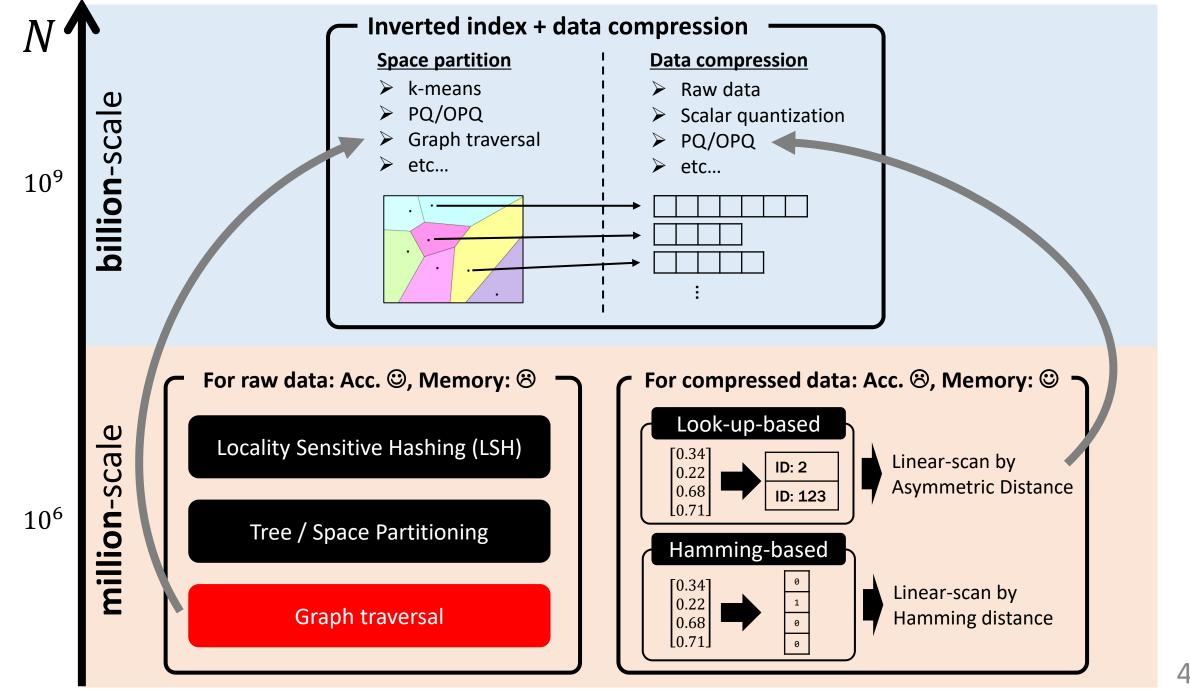
\$> pip install annoy

```
t = AnnoyIndex(D)
for n, x in enumerate(X):
        t.add_item(n, x)
t.build(n_trees)

t.get_nns_by_vector(q, topk)
```



- © Developed at Spotify. Well-maintained. Stable
- © Simple interface with only a few parameters
- Baseline for million-scale data
- © Support mmap, i.e., can be accessed from several processes
- Large memory consumption
- Runtime itself is slower than HNSW

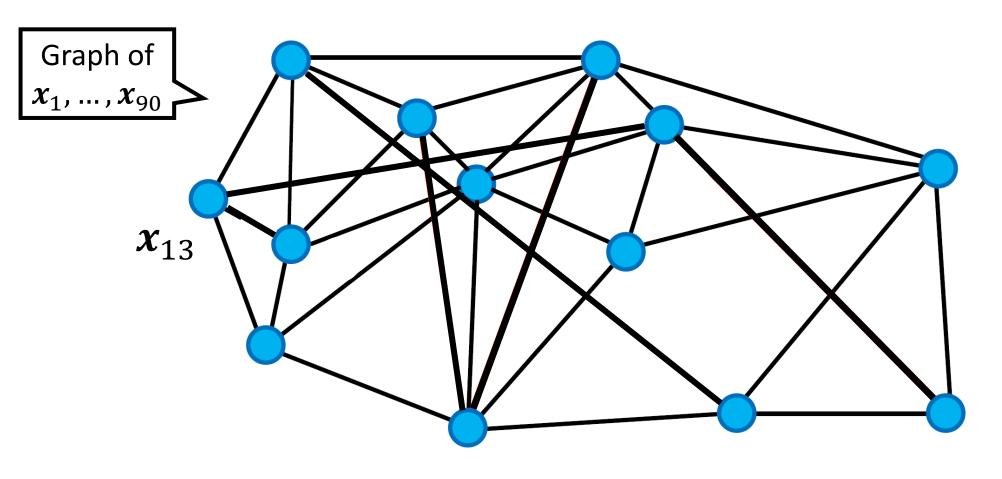


Graph traversal

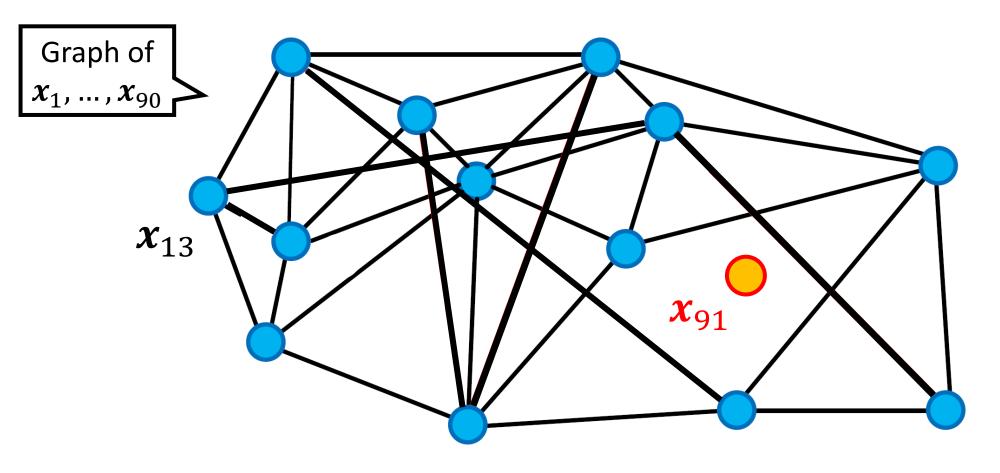
Very popular in recent years

Around 2017, it turned out that the graph-traversal-based methods work well for million-scale data

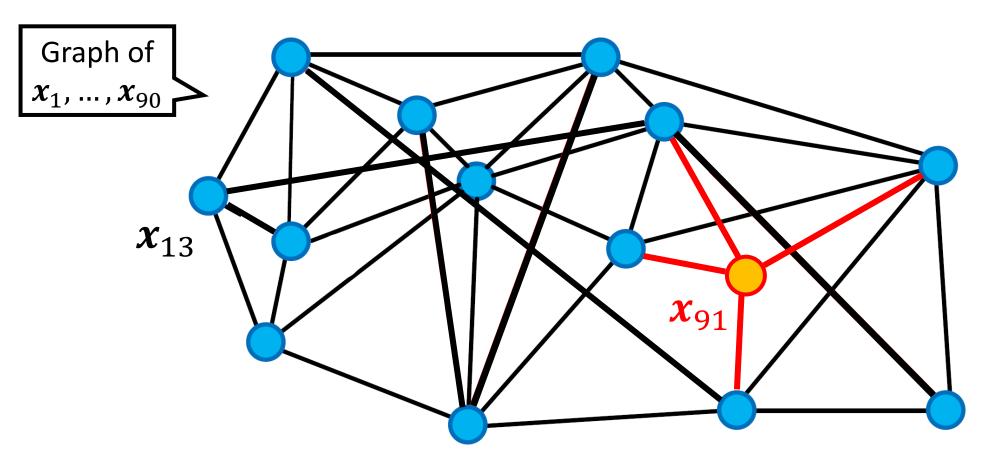
- Pioneer:
 - ✓ Navigable Small World Graphs (NSW)
 - ✓ Hierarchical NSW (HNSW)
- > Implementation: nmslib, hnsw, faiss



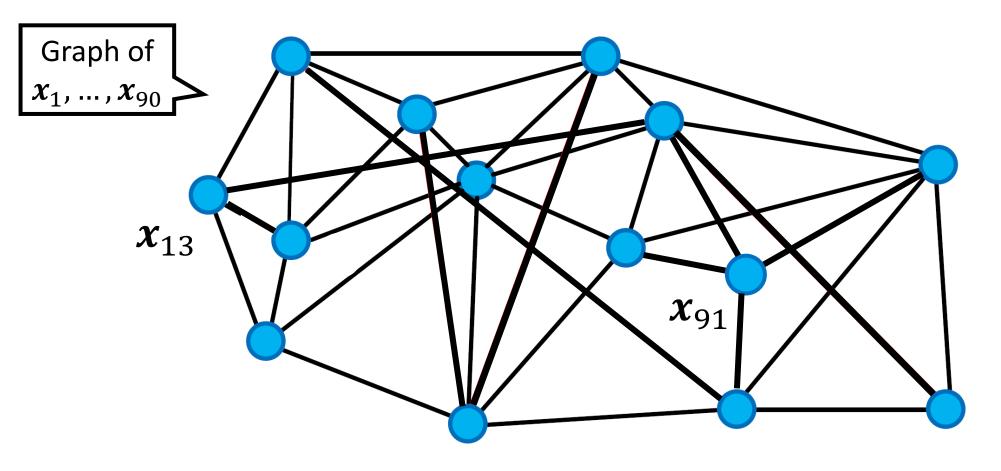
Each node is a database vector



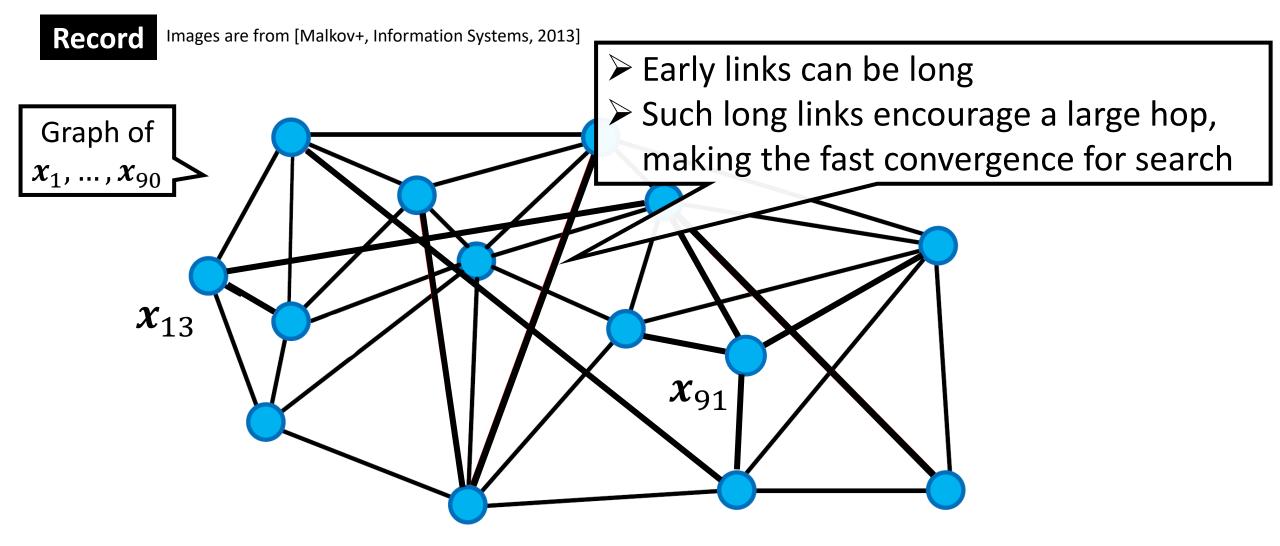
- Each node is a database vector
- >Given a new database vector, create new edges to neighbors



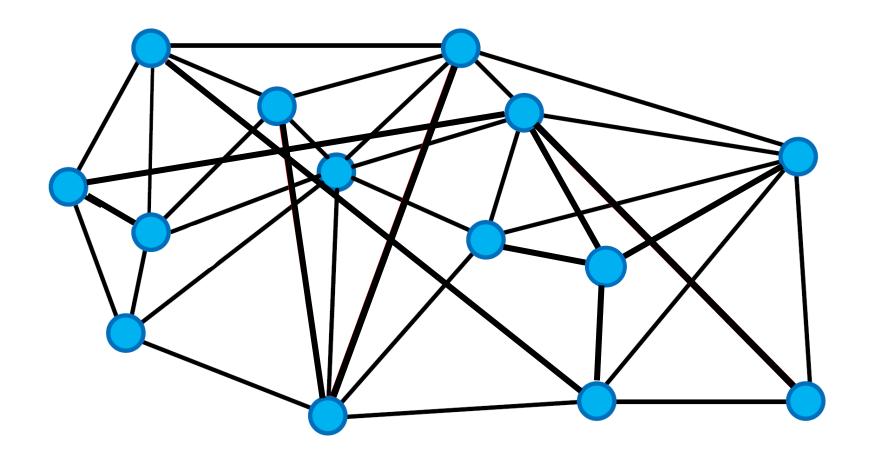
- Each node is a database vector
- Given a new database vector, create new edges to neighbors

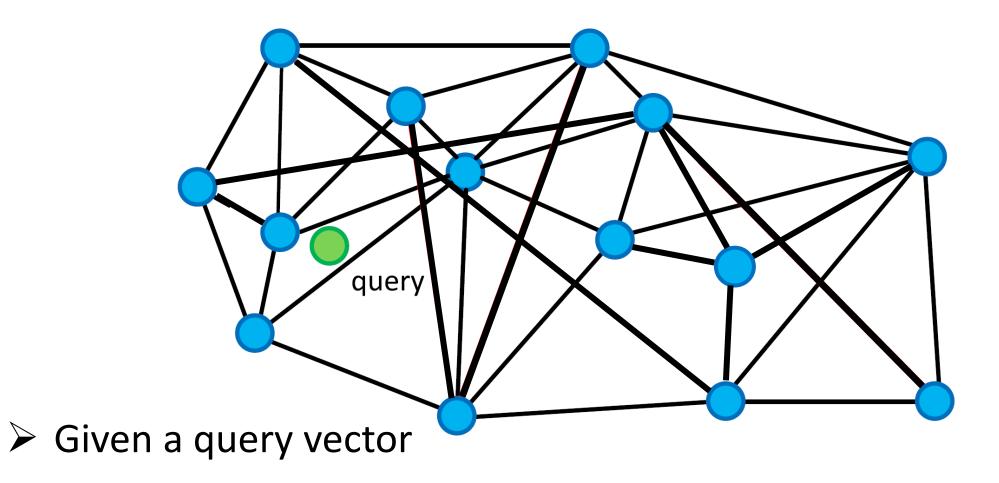


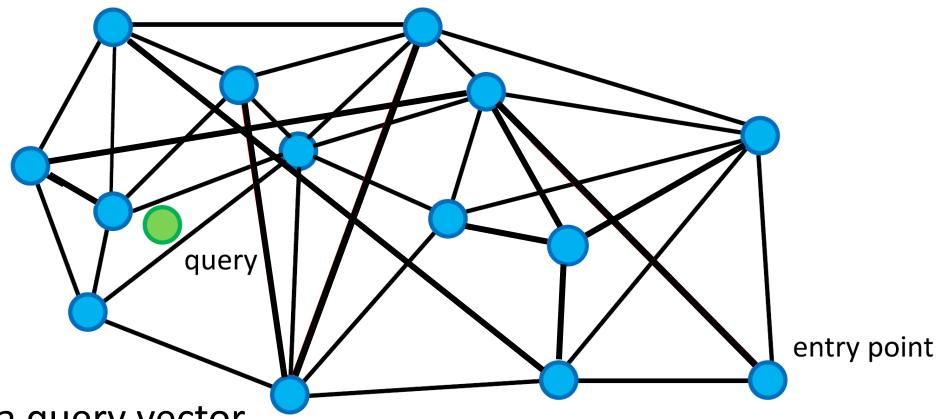
- Each node is a database vector
- >Given a new database vector, create new edges to neighbors



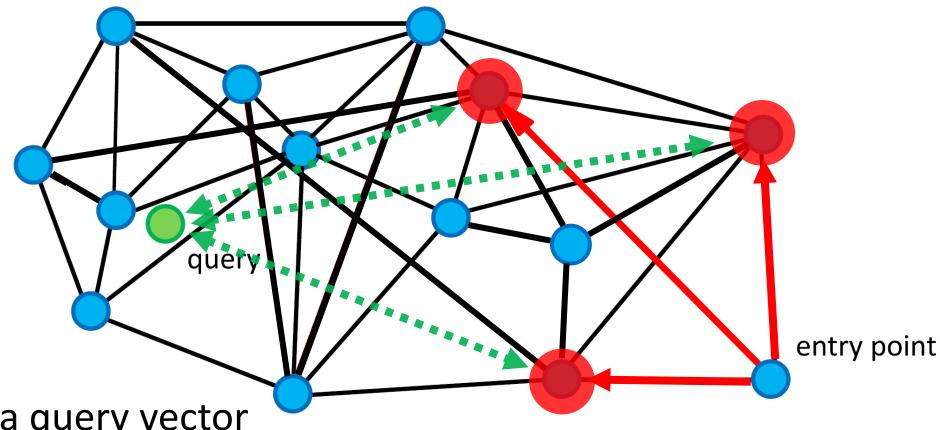
- Each node is a database vector
- >Given a new database vector, create new edges to neighbors



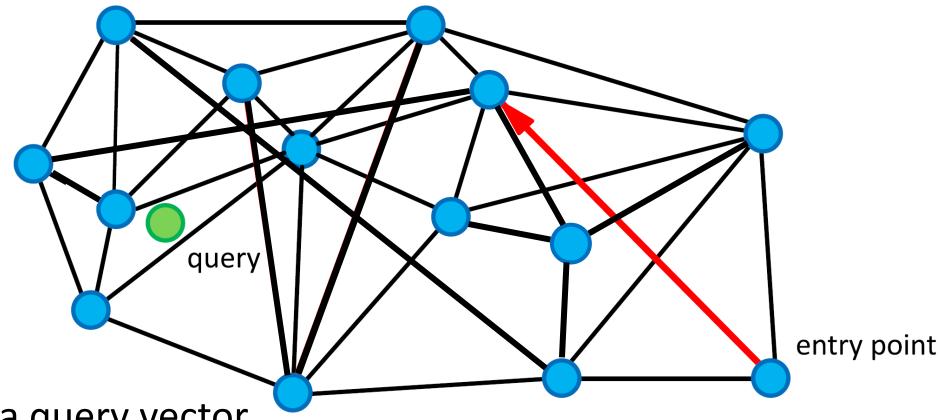




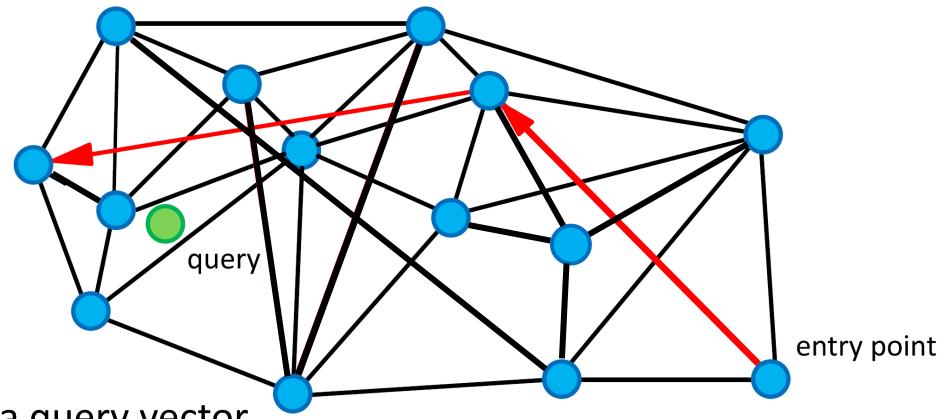
- Given a query vector
- > Start from a random point



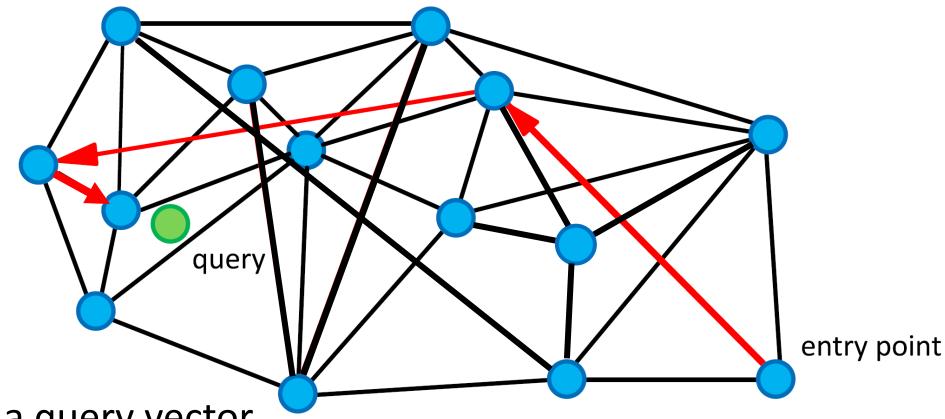
- Given a query vector
- > Start from a random point
- From the connected nodes, find the closest one to the query



- Given a query vector
- > Start from a random point
- > From the connected nodes, find the closest one to the query



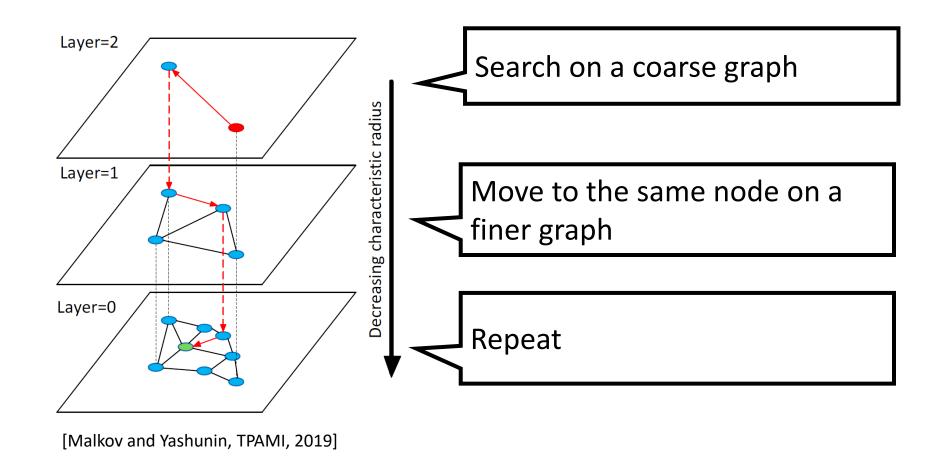
- Given a query vector
- > Start from a random point
- > From the connected nodes, find the closest one to the query
- > Traverse in a greedy manner



- Given a query vector
- > Start from a random point
- > From the connected nodes, find the closest one to the query
- > Traverse in a greedy manner

Extension: Hierarchical NSW; HNSW

- Construct the graph hierarchically [Malkov and Yashunin, TPAMI, 2019]
- This structure works pretty well for real-world data



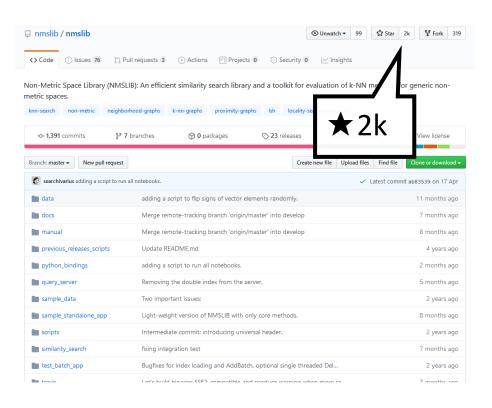
NMSLIB (Non-Metric Space Library)

https://github.com/nmslib/nmslib

\$> pip install nmslib

```
index = nmslib.init(method='hnsw')
index.addDataPointBatch(X)
index.createIndex(params1)

index.setQueryTimeParams(params2)
index.knnQuery(q, topk)
```



- The "hnsw" is the best method as of 2020 for million-scale data
- © Simple interface
- © If memory consumption is not the problem, try this
- Large memory consumption
- Data addition is not fast

Other implementations of HNSW

Hnswlib: https://github.com/nmslib/hnswlib

- Spin-off library from nmslib
- Include only hnsw
- > Simpler; may be useful if you want to extend hnsw

Faiss: https://github.com/facebookresearch/faiss

- > Libraries for PQ-based methods. Will Introduce later
- This lib also includes hnsw

Other graph-based approaches

- > From Alibaba:
- C. Fu et al., "Fast Approximate Nearest Neighbor Search with the Navigating Spreading-out Graph", VLDB19

https://github.com/ZJULearning/nsg

- > From Microsoft Research Asia. Used inside Bing:
- J. Wang and S. Lin, "Query-Driven Iterated Neighborhood Graph Search for Large Scale Indexing", ACMMM12 (This seems the backbone paper)

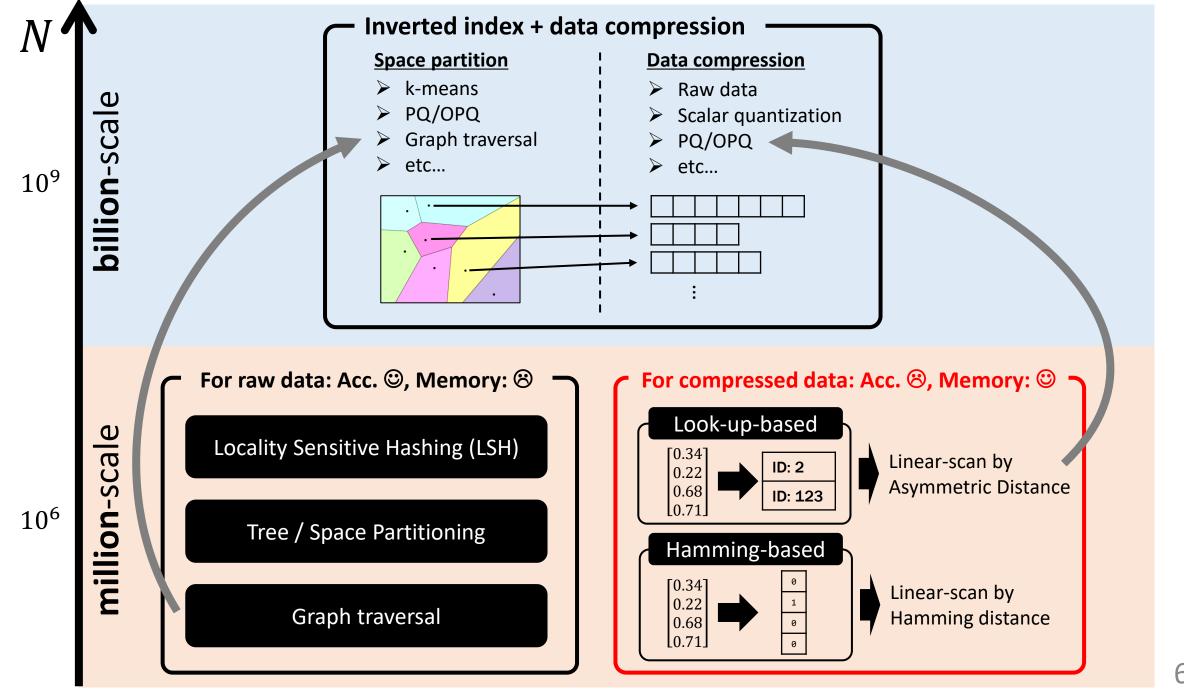
https://github.com/microsoft/SPTAG

- From Yahoo Japan. Competing with NMSLIB for the 1st place of benchmark:
- M. Iwasaki and D. Miyazaki, "Optimization of Indexing Based on k-Nearest Neighbor Graph for Proximity Search in High-dimensional Data", arXiv18

https://github.com/yahoojapan/NGT

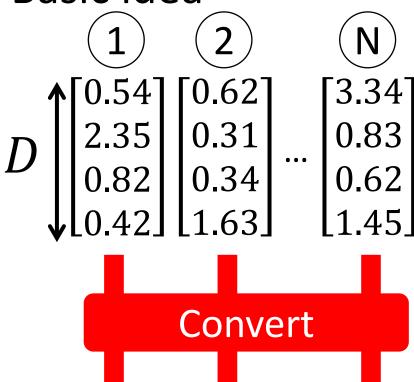
Reference

- ➤ The original paper of Navigable Small World Graph: Y. Malkov et al., "Approximate Nearest Neighbor Algorithm based on Navigable Small World Graphs," Information Systems 2013
- The original paper of Hierarchical Navigable Small World Graph: Y. Malkov and D. Yashunin, "Efficient and Robust Approximate Nearest Neighbor search using Hierarchical Navigable Small World Graphs," IEEE TPAMI 2019



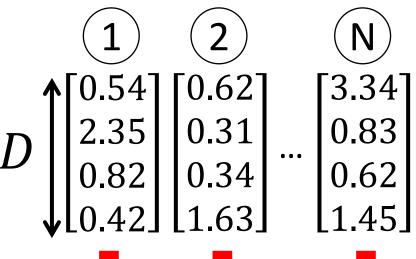
Basic idea

cod

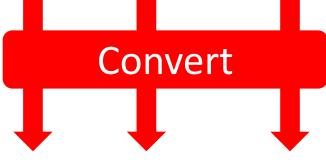


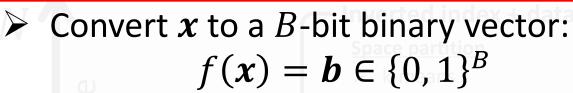
- \triangleright Need 4ND byte to represent N real-valued vectors using floats
- ➤ If N or D is too large, we cannot read the data on memory ✓ E.g., 512 GB for $D=128, N=10^9$
- > Convert each vector to a **short-code**
- ➤ Short-code is designed as memory-efficient
 - ✓ E.g., 4 GB for the above example, with 32-bit code
- > Run search for short-codes

Basic idea



- Need 4ND hyte to represent N real-valued vectors
 - What kind of conversion is preferred?
 - 1. The "distance" between two codes can be calculated (e.g., Hamming-distance)
 - 2. The distance can be computed quickly
 - 3. That distance approximates the distance between the original vectors (e.g., L_2)
 - 4. Sufficiently small length of codes can achieve the above three criteria





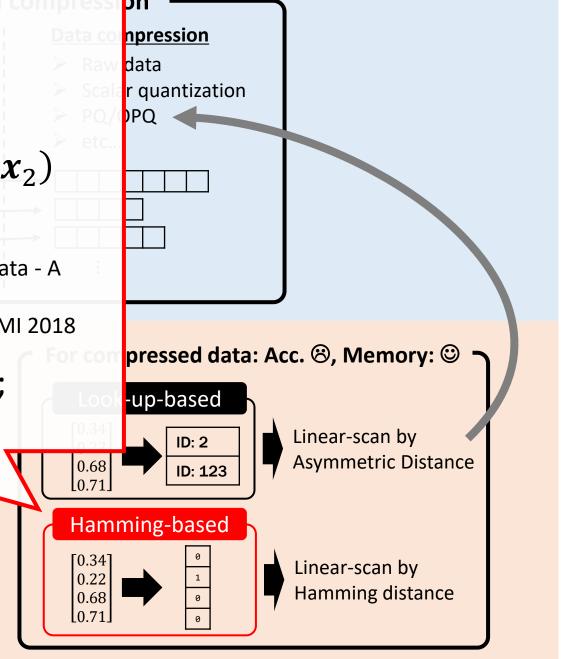
Hamming distance

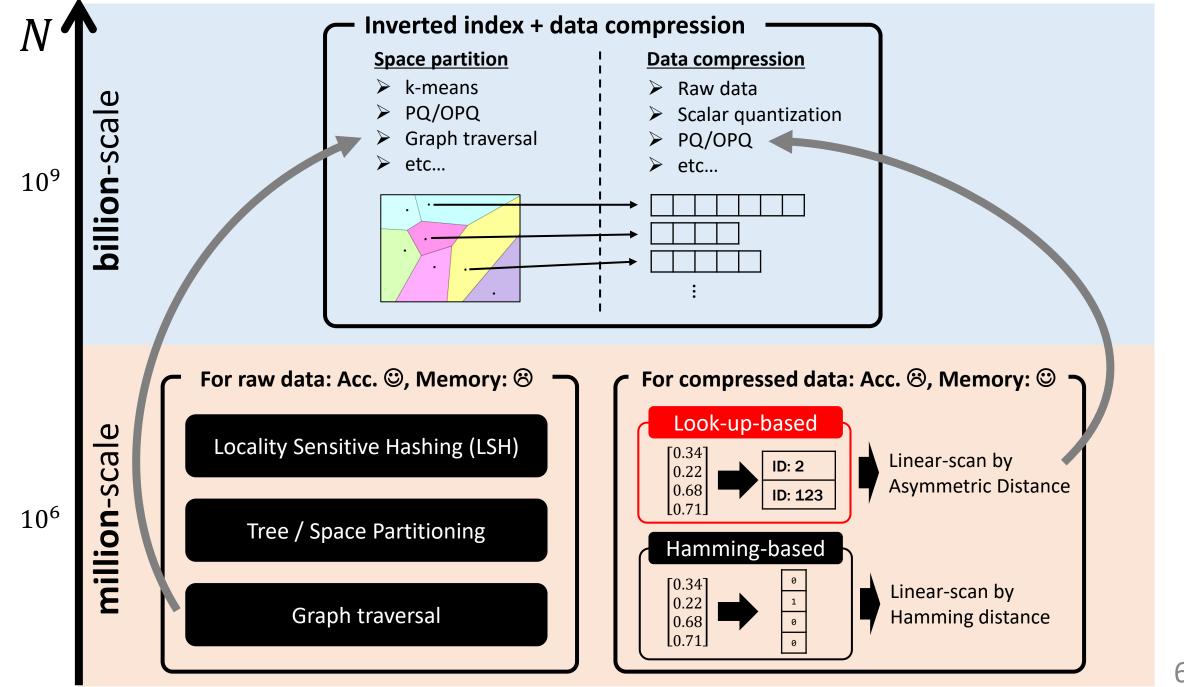
$$d_H(\mathbf{b}_1, \mathbf{b}_2) = |\mathbf{b}_1 \oplus \mathbf{b}_2| \sim d(\mathbf{x}_1, \mathbf{x}_2)$$

- > A lot of methods:
 - ✓ J. Wang et al., "Learning to Hash for Indexing Big Data A Survey", Proc. IEEE 2015
 - ✓ J. Wang et al., "A Survey on Learning to Hash", TPAMI 2018
- Not the main scope of this tutorial;
 PQ is usually more accurate

Tree / Space Partitioning

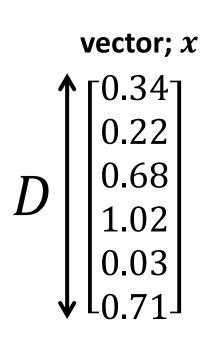
Graph traversal

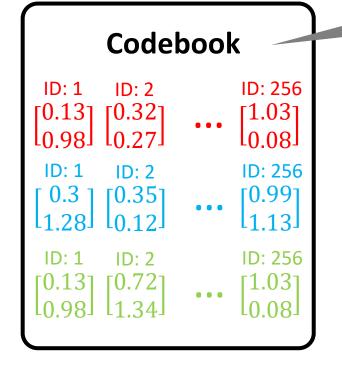




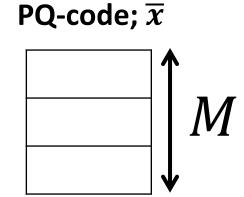
Product Quantization; PQ [Jégou, TPAMI 2011]

> Split a vector into sub-vectors, and quantize each sub-vector



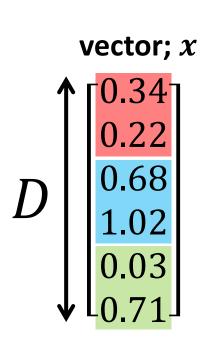


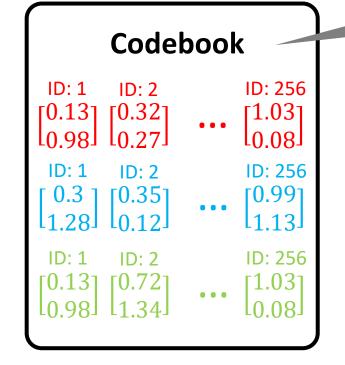
Trained beforehand by k-means on training data

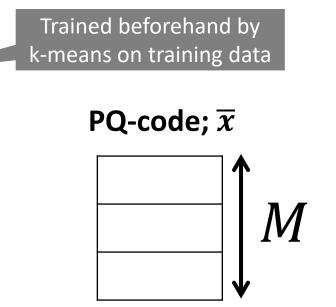


Product Quantization; PQ [Jégou, TPAMI 2011]

> Split a vector into sub-vectors, and quantize each sub-vector

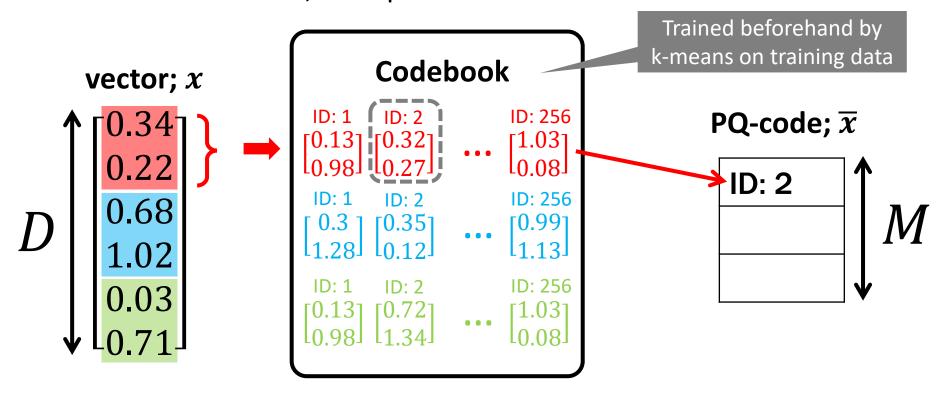






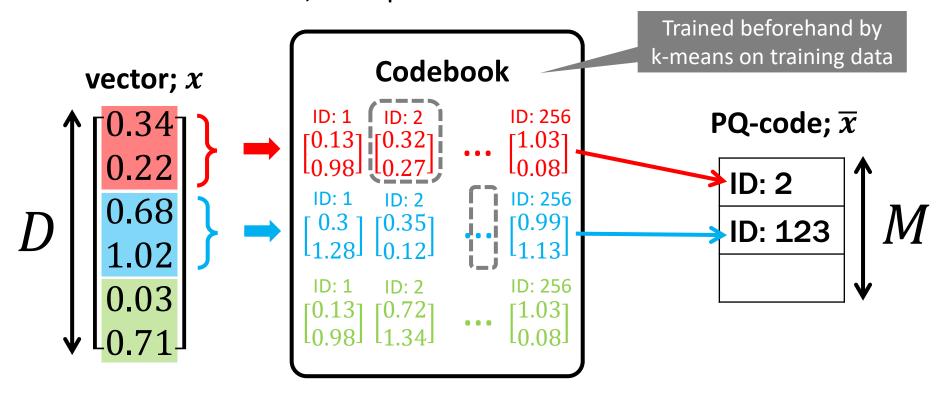
Product Quantization; PQ [Jégou, TPAMI 2011]

> Split a vector into sub-vectors, and quantize each sub-vector



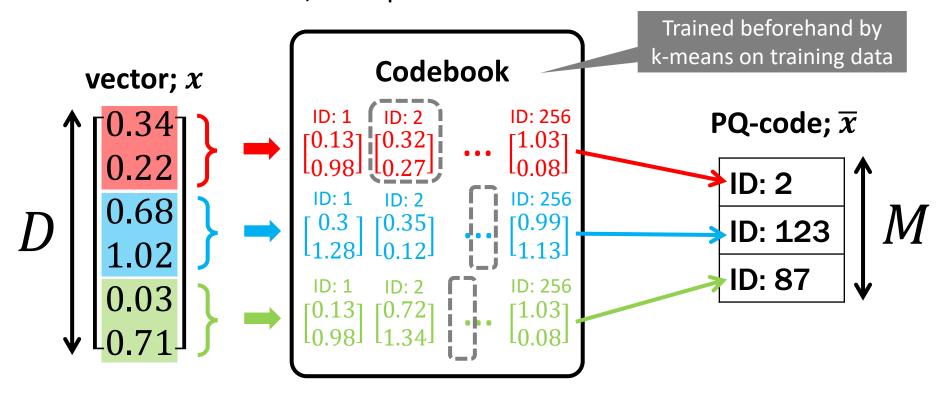
Product Quantization; PQ [Jégou, TPAMI 2011]

> Split a vector into sub-vectors, and quantize each sub-vector



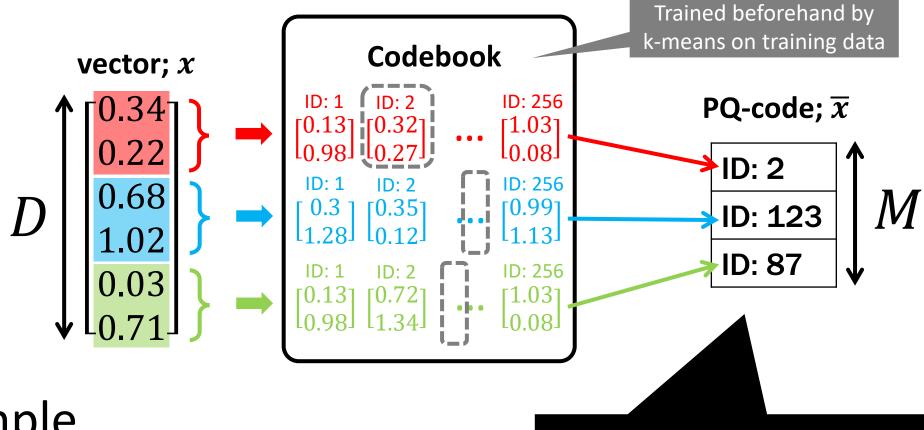
Product Quantization; PQ [Jégou, TPAMI 2011]

> Split a vector into sub-vectors, and quantize each sub-vector



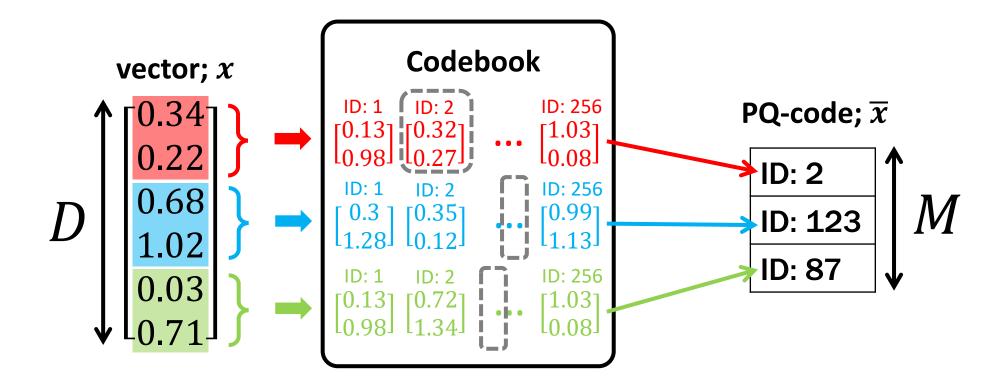
Product Quantization; PQ [Jégou, TPAMI 2011]

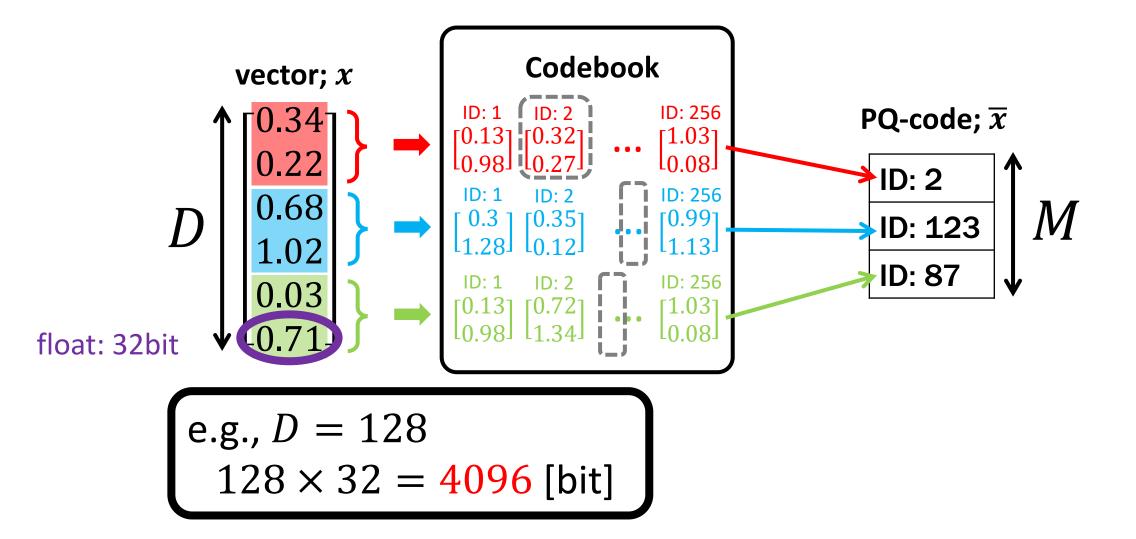
> Split a vector into sub-vectors, and quantize each sub-vector

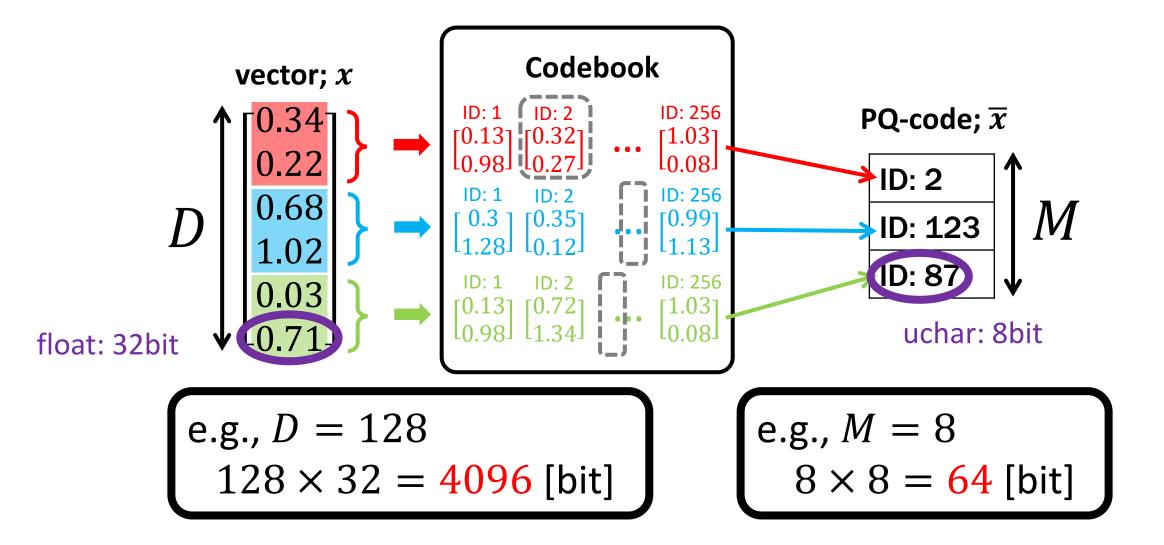


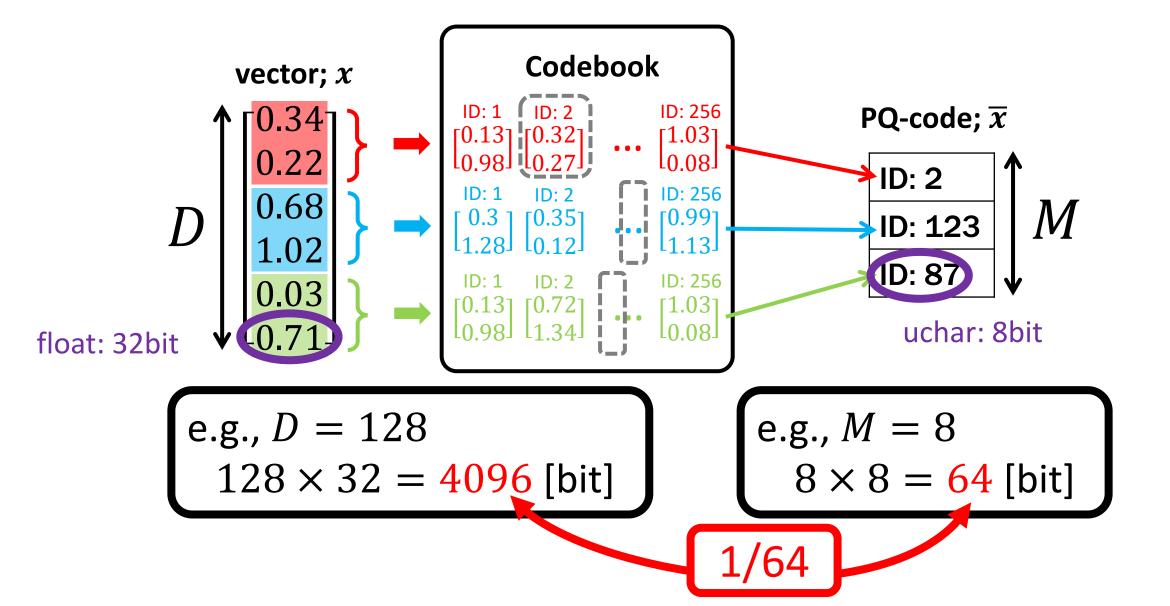
- > Simple
- > Memory efficient
- Distance can be esimated

Bar notation for PQ-code in this tutorial: $\underline{x} \in \mathbb{R}^D \mapsto \overline{x} \in \{1, ..., 256\}^M$





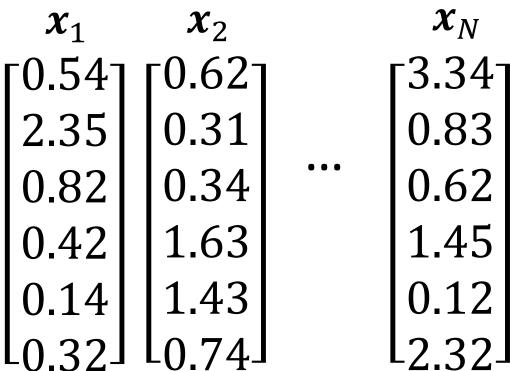




Database vectors Query; $q \in \mathbb{R}^D$ 3.34 0.83 0.82 0.62 1.63 0.42 1.45

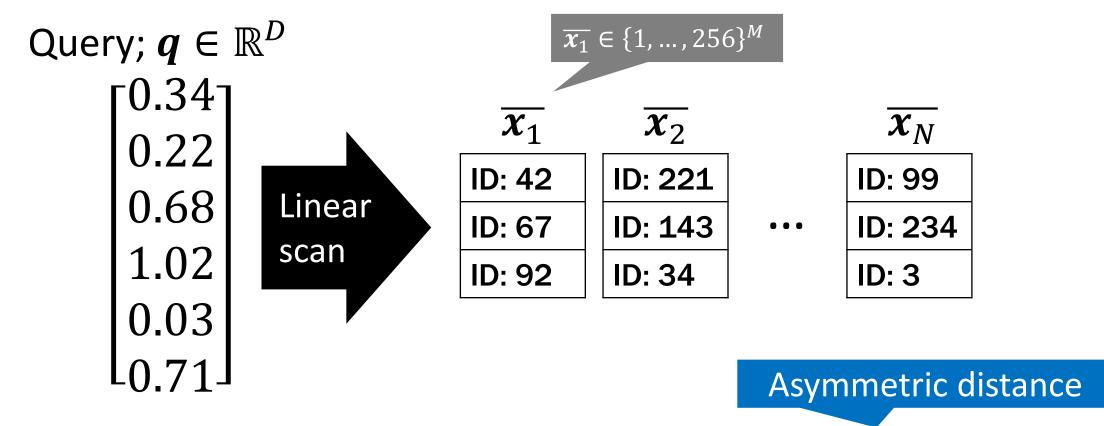
Query; $q \in \mathbb{R}^{D}$ $\begin{bmatrix}
0.34 \\
0.22 \\
0.68 \\
1.02 \\
0.03 \\
0.71
\end{bmatrix}$

Database vectors



Product quantization

 $\overline{x_1} \in \{1, \dots, 256\}^M$ Query; $q \in \mathbb{R}^D$ $\overline{\boldsymbol{x}_1}$ $\overline{\boldsymbol{x}_2}$ $\overline{\boldsymbol{x}_N}$ ID: 221 ID: 42 ID: 99 ID: 143 ID: 67 ID: 234 ID: 92 **ID: 34 ID: 3**



- $> d(q,x)^2$ can be efficiently approximated by $d_A(q,\overline{x})^2$
- > Lookup-trick: Looking up pre-computed distance-tables
- \triangleright Linear-scan by d_A

Not pseudo codes

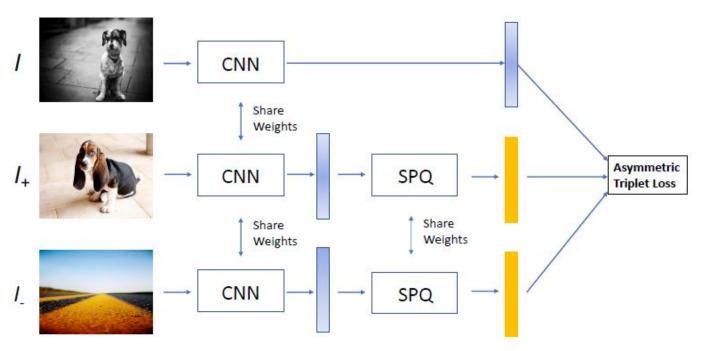
```
import numpy as np
from scipy.cluster.vq import vq, kmeans2
from scipy.spatial.distance import cdist
def train(vec, M):
    Ds = int(vec.shape[1] / M) # Ds = D / M
    # codeword[m][k] = \mathbf{c}_{k}^{m}
    codeword = np.empty((M, 256, Ds), np.float32)
    for m in range(M):
        vec sub = vec[:, m * Ds : (m + 1) * Ds]
        codeword[m], label = kmeans2(vec sub, 256)
    return codeword
def encode (codeword, vec): # vec = \{x_n\}_{n=1}^N
    M, _K, Ds = codeword.shape
    # pqcode[n] = \mathbf{i}(\mathbf{x}_n), pqcode[n][m] = i^m(\mathbf{x}_n)
    pgcode = np.empty((vec.shape[0], M), np.uint8)
    for m in range (M): # Eq. (2) and Eq. (3)
        vec\_sub = vec[:, m * Ds: (m + 1) * Ds]
        pgcode[:, m], dist = vg(vec_sub, codeword[m])
    return pgcode
```

```
def search(codeword, pgcode, query):
    M, _K, Ds = codeword.shape
    # dist_table = D(m,k)
    dist_table = np.empty((M, 256), np.float32)
    for m in range (M):
        query\_sub = query[m * Ds: (m + 1) * Ds]
        dist_table[m, :] = cdist([query_sub],
     \hookrightarrow codeword[m], 'sqeuclidean')[0] # Eq. (5)
    # Eq. (6)
    dist = np.sum(dist_table[range(M), pgcode], axis=1)
    return dist
if __name__ == "__main_":
    # Read vec_train, vec (\{\mathbf{x}_n\}_{n=1}^N), and query (\mathbf{y})
    codeword = train(vec train, M)
    pgcode = encode(codeword, vec)
    dist = search(codeword, pgcode, query)
    print(dist)
```

- Only tens of lines in Python
- > Pure Python library: nanopq https://github.com/matsui528/nanopq
- ▶ pip install nanopq

Deep PQ

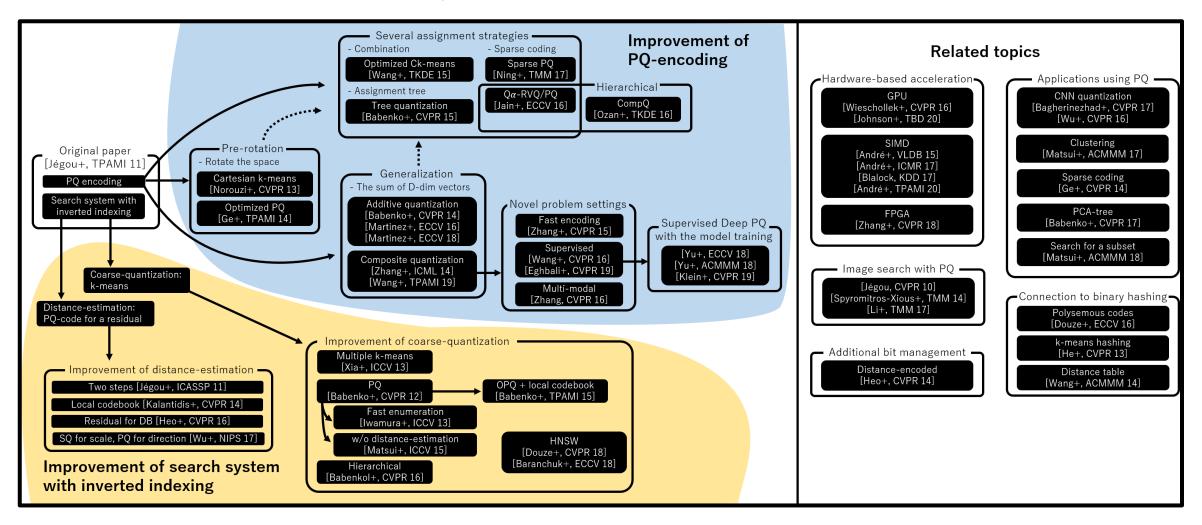
- Supervised search (unlike the original PQ)
- ➤ Base-CNN + PQ-like-layer + Some-loss
- Need class information



- T. Yu et al., "Product Quantization Network for Fast Image Retrieval", ECCV 18, IJCV20
- L. Yu et al., "Generative Adversarial Product Quantisation", ACMMM 18
- B. Klein et al., "End-to-End Supervised Product Quantization for Image Search and Retrieval", CVPR 19

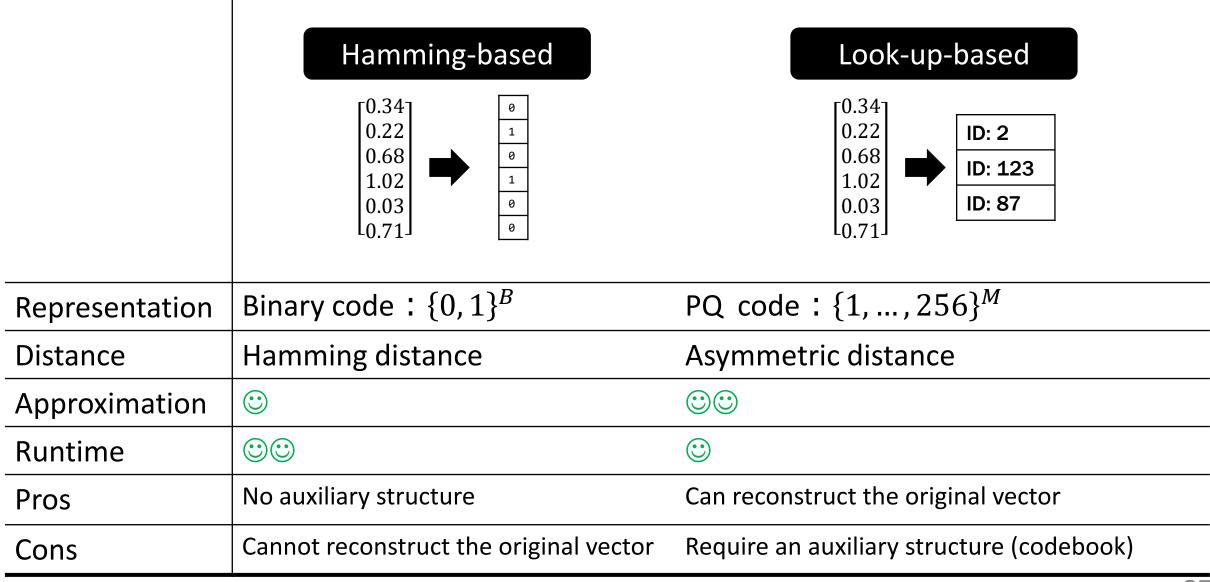
From T. Yu et al., "Product Quantization Network for Fast Image Retrieval", ECCV 18

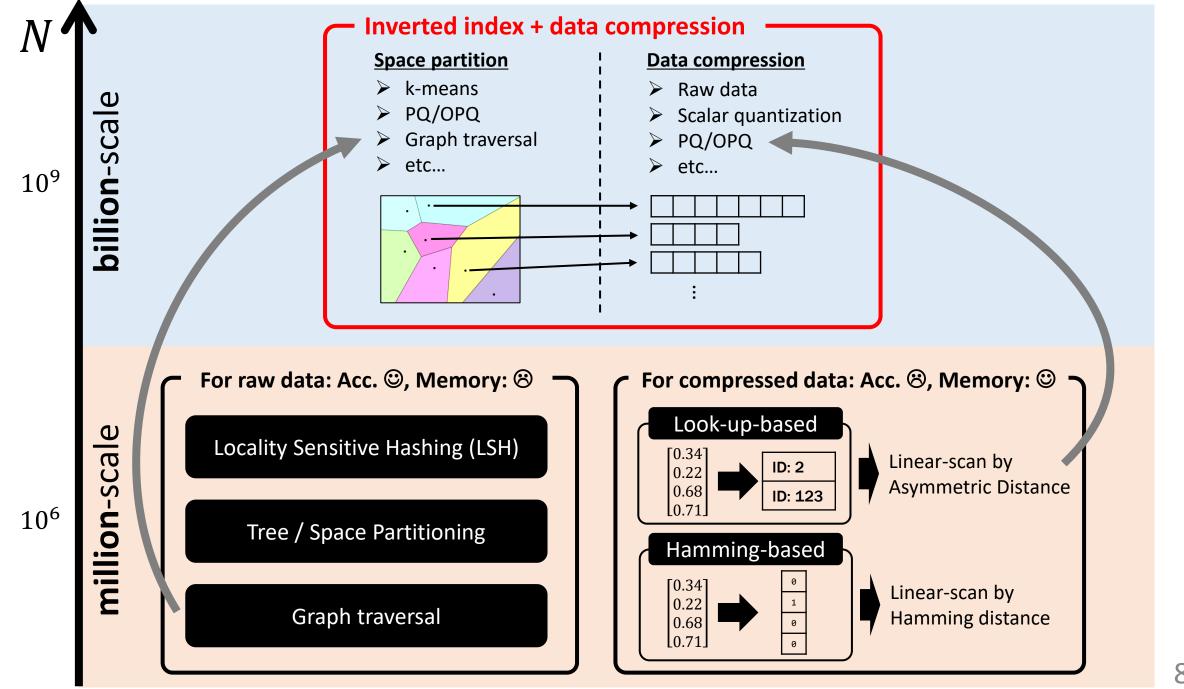
More extensive survey for PQ



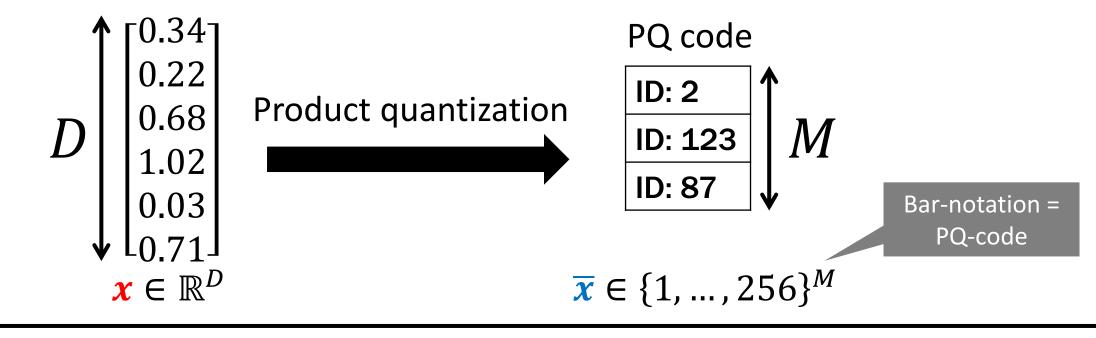
- https://github.com/facebookresearch/faiss/wiki#research-foundations-of-faiss
- http://yusukematsui.me/project/survey_pq/survey_pq_jp.html
- > Y. Matsui, Y. Uchida, H. Jégou, S. Satoh "A Survey of Product Quantization", ITE 2018.

Hamming-based vs Look-up-based



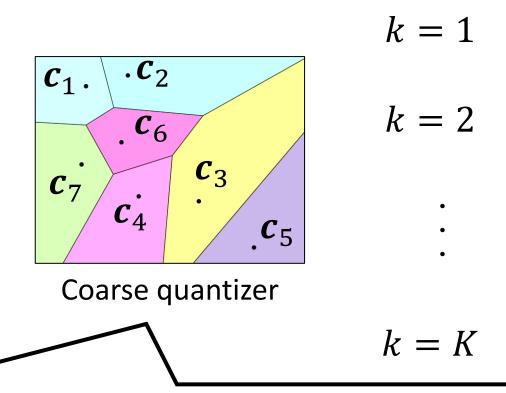


Inverted index + PQ: Recap the notation



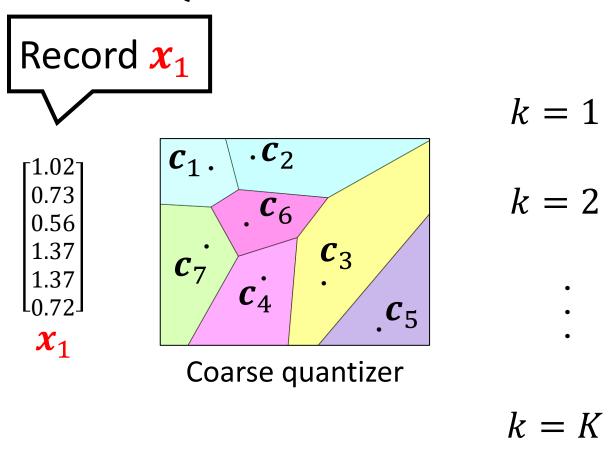
- ightharpoonup Suppose $q, x \in \mathbb{R}^D$, where x is quantized to \overline{x}
- $> d(q, x)^2$ can be efficiently approximated by \overline{x} :

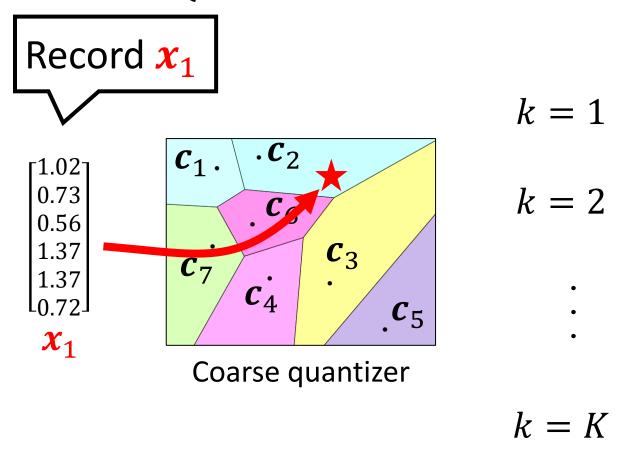
$$d(\boldsymbol{q}, \boldsymbol{x})^2 \sim d_A(\boldsymbol{q}, \overline{\boldsymbol{x}})^2$$

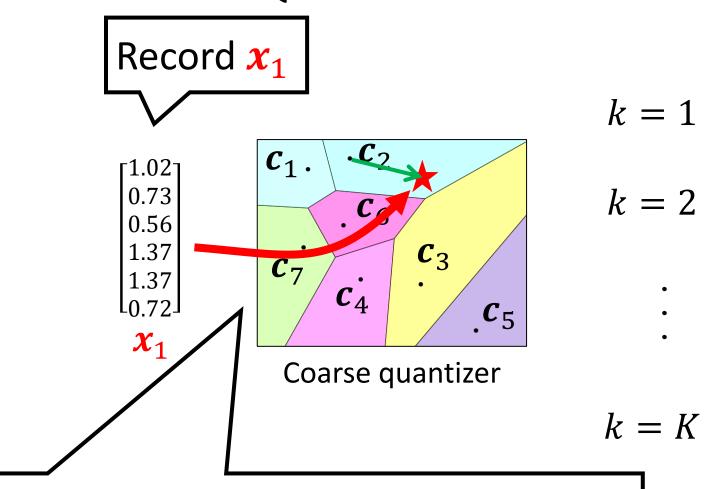


Prepare a coarse quantizer

- \checkmark Split the space into K sub-spaces
- $\checkmark \{c_k\}_{k=1}^K$ are created by running k-means on training data

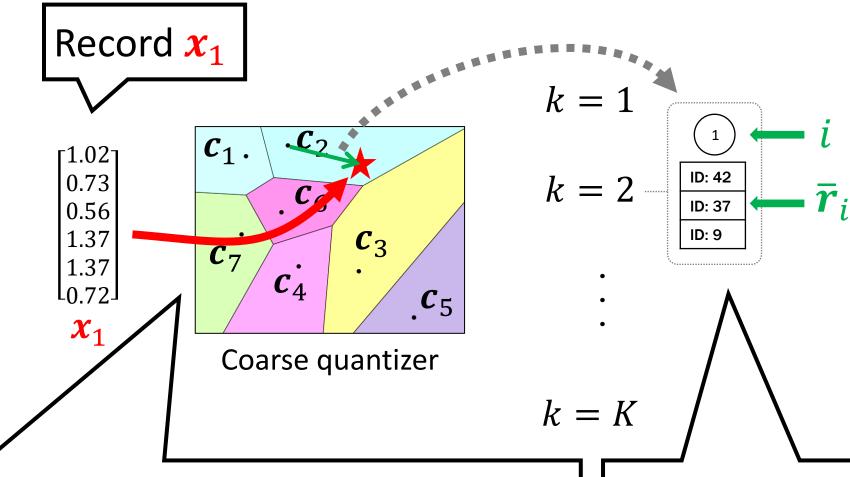






- $\succ c_2$ is closest to x_1
- \succ Compute a **residual** r_1 between x_1 and x_2 :

$$\boldsymbol{r}_1 = \boldsymbol{x}_1 - \boldsymbol{c}_2 \quad ()$$

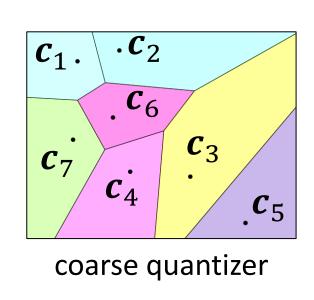


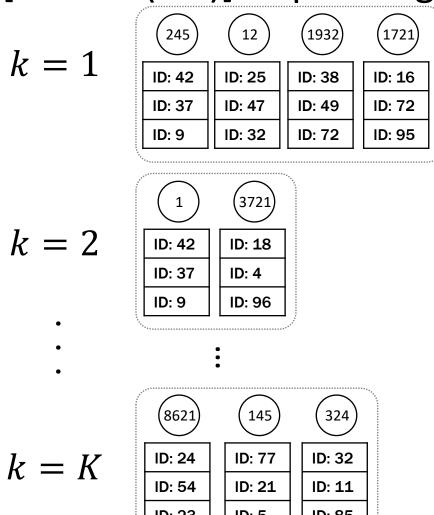
- $\succ c_2$ is closest to x_1
- \succ Compute a **residual** r_1 between x_1 and c_2 :

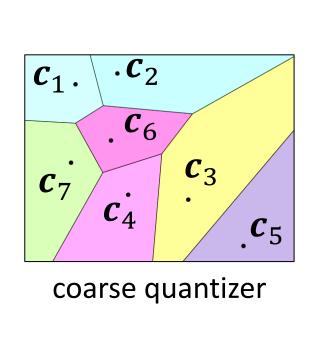
$$\boldsymbol{r}_1 = \boldsymbol{x}_1 - \boldsymbol{c}_2 \quad ()$$

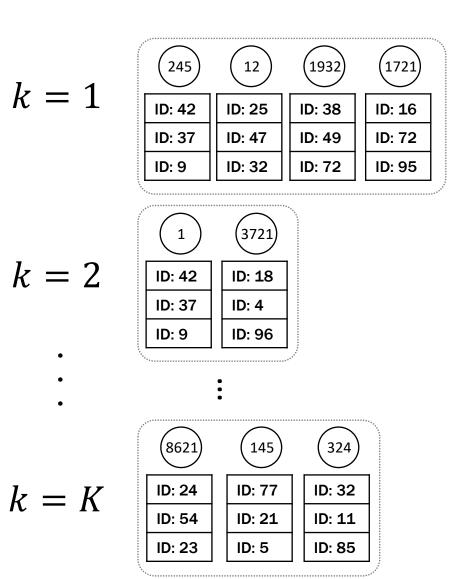
- \triangleright Quantize r_1 to \bar{r}_1 by PQ
- Record it with the ID, "1"
- \triangleright i.e., record $(i, \overline{r_i})$

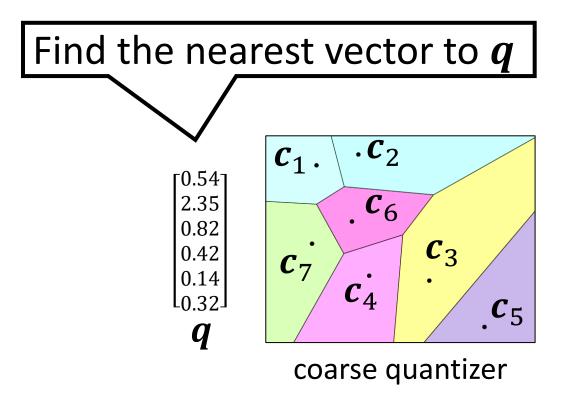
For all database vectors, record [ID + PQ(res)] as pointing lists

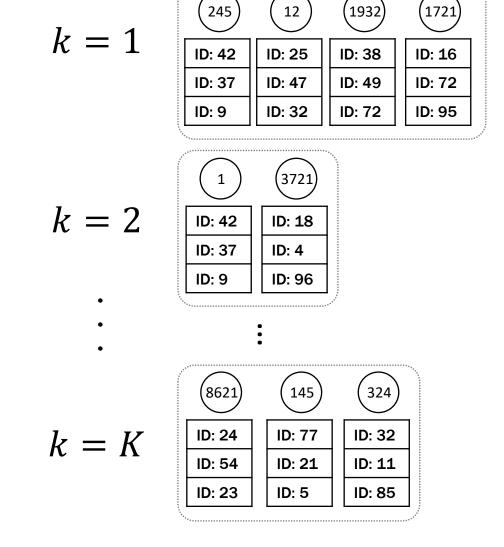


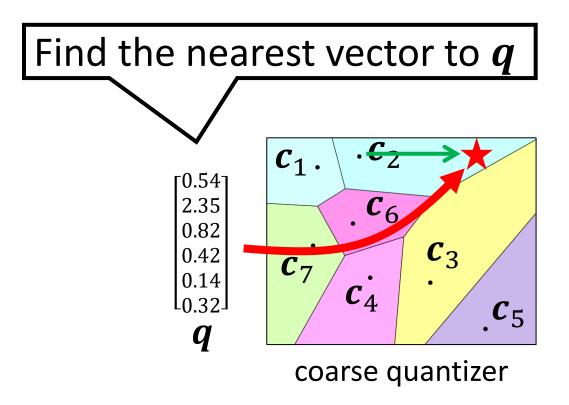


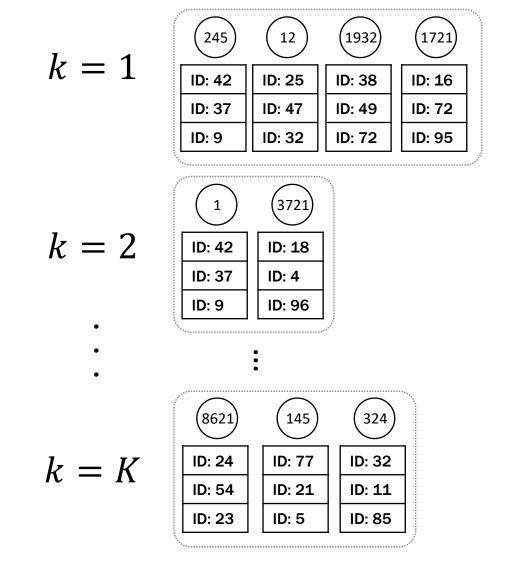


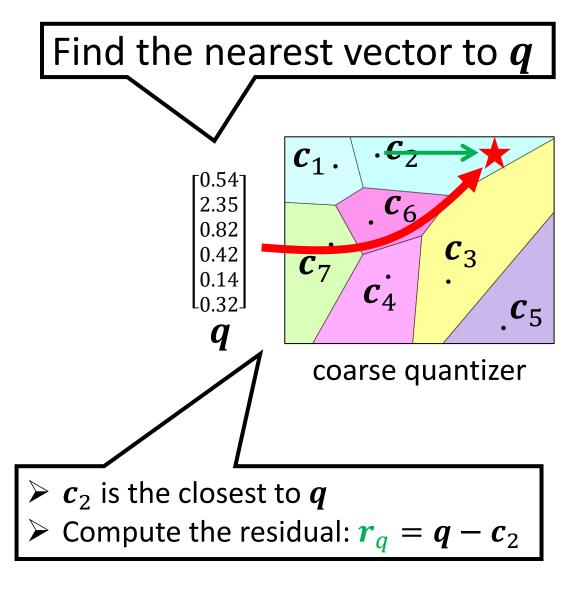


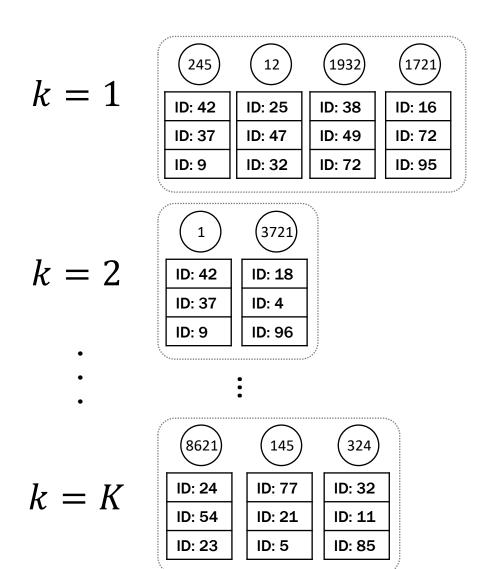


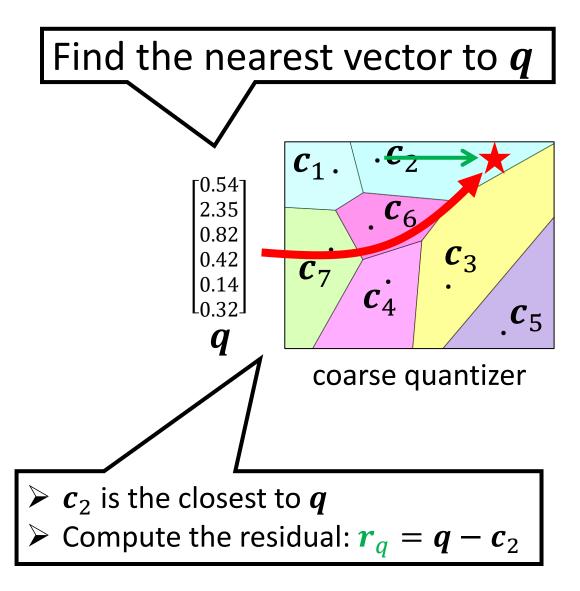


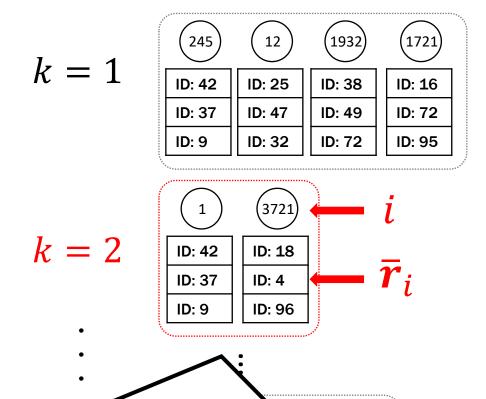










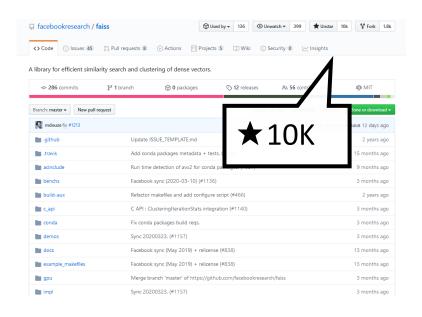


- For all (i, \bar{r}_i) in k = 2, compare \bar{r}_i with r_q : $d(q, x_i)^2 = d(q c_2, x_i c_2)^2$ $= d(r_q, r_i)^2 \sim d_A(r_q, \bar{r}_i)^2$
- > Find the smallest one (several strategies)

Faiss

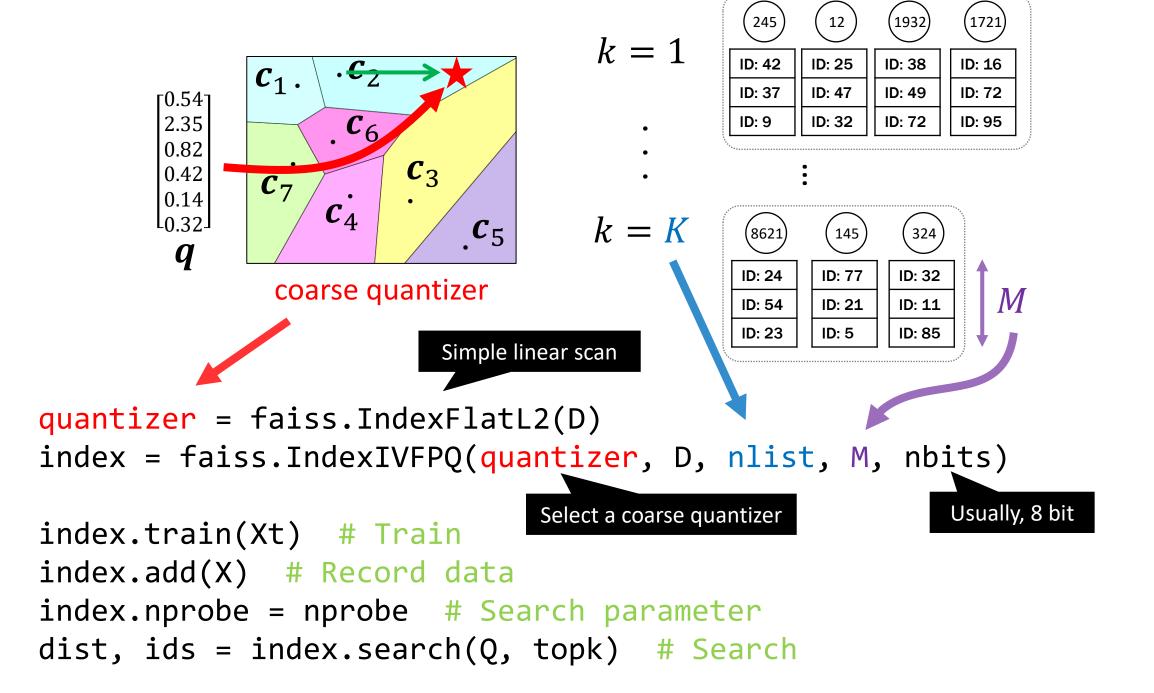
https://github.com/facebookresearch/faiss

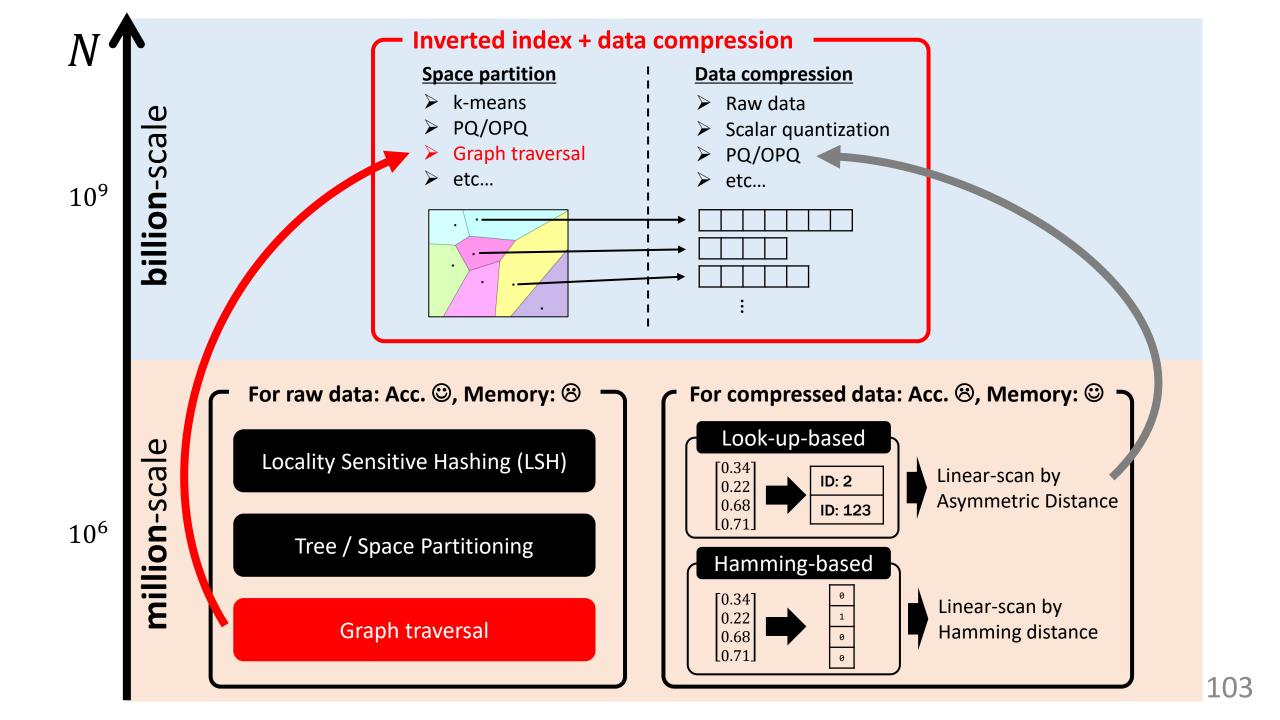
- \$> conda install faiss-cpu -c pytorch
- \$> conda install faiss-gpu -c pytorch

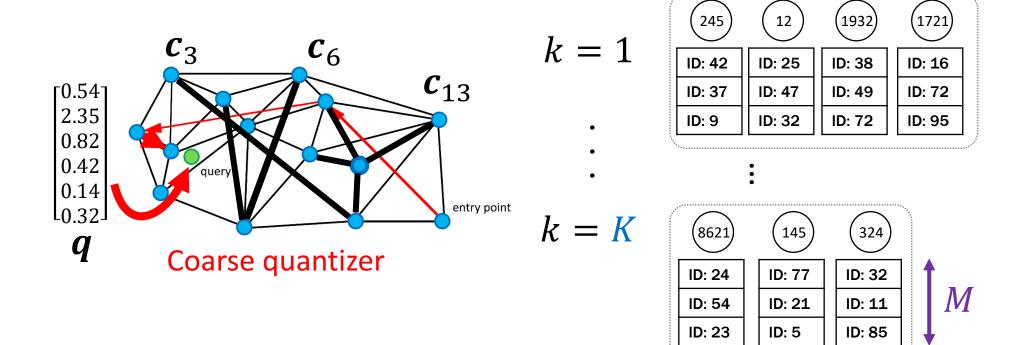


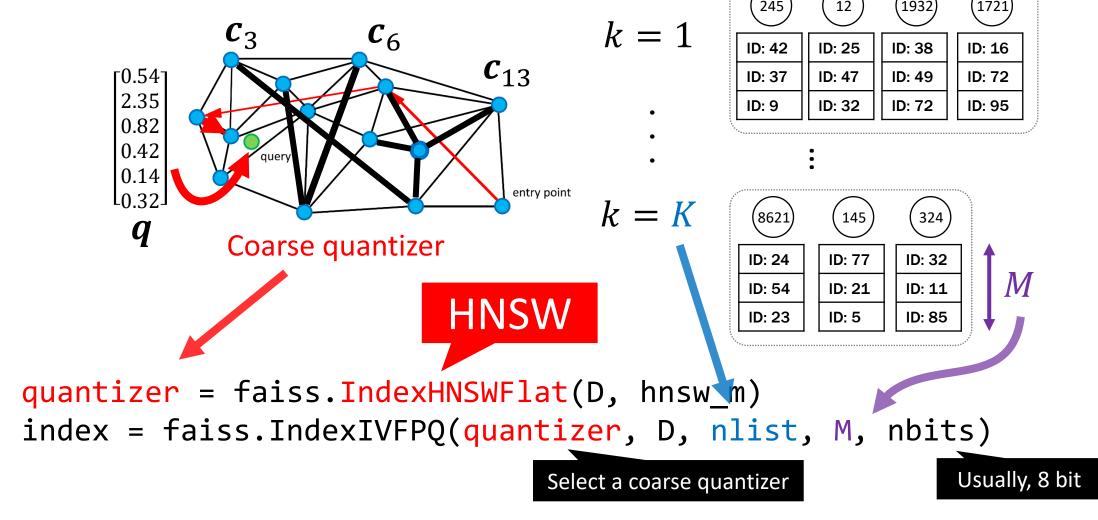
- > From the original authors of the PQ and a GPU expert, FAIR
- ➤ CPU-version: all PQ-based methods
- ➤ GPU-version: some PQ-based methods
- ➤ Bonus:
 - ➤ NN (not ANN) is also implemented, and quite fast
 - ➤ k-means (CPU/GPU). Fast.

Benchmark of k-means:









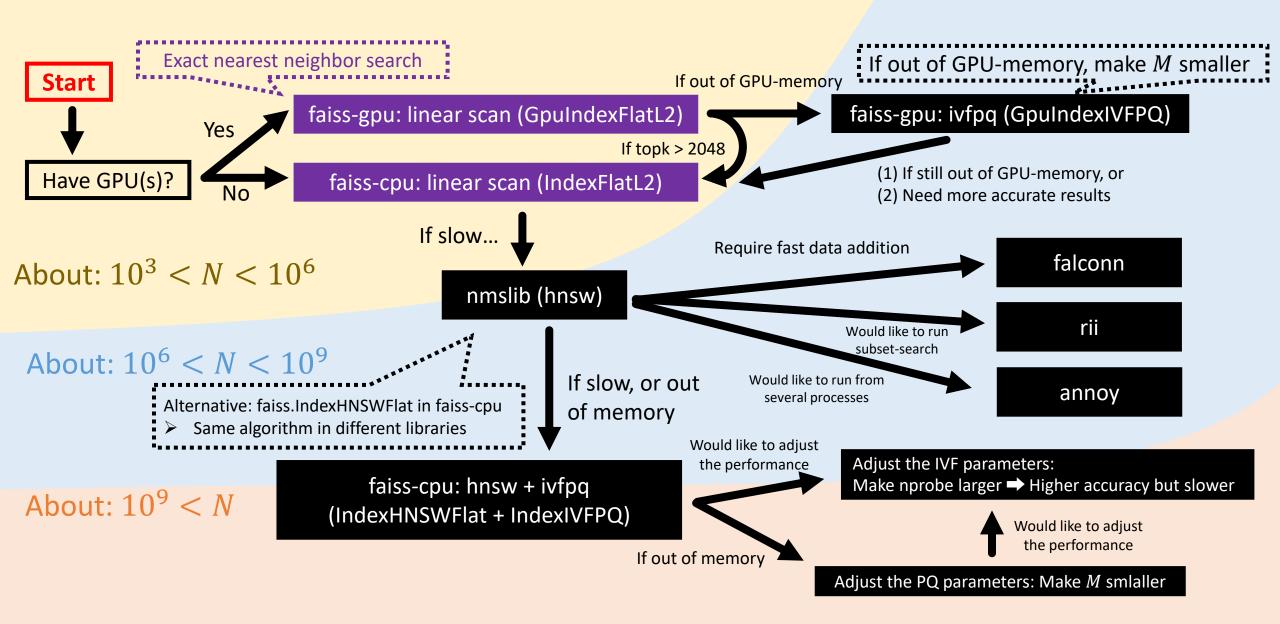
- ➤ Switch a coarse quantizer from linear-scan to HNSW
- The best approach for billion-scale data as of 2020
- The backbone of [Douze+, CVPR 2018] [Baranchuk+, ECCV 2018]

- © From the original authors of PQ. Extremely efficient (theory & impl)
- © Used in a real-world product (Mercari, etc)
- © For billion-scale data, Faiss is the best option
- © Especially, large-batch-search is fast; #query is large
- Lack of documentation (especially, python binding)
- (3) Hard for a novice user to select a suitable algorithm
- As of 2020, anaconda is required. Pip is not supported officially

Reference

- Faiss wiki: [https://github.com/facebookresearch/faiss/wiki]
- Faiss tips: [https://github.com/matsui528/faiss_tips]
- > Julia implementation of lookup-based methods [https://github.com/una-dinosauria/Rayuela.jl]
- > PQ paper: H. Jégou et al., "Product quantization for nearest neighbor search," TPAMI 2011
- > IVFADC + HNSW (1): M. Douze et al., "Link and code: Fast indexing with graphs and compact regression codes," CVPR 2018
- > IVFADC + NHSW (2): D. Baranchuk et al., "Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors," ECCV 2018

cheat-sheet for ANN in Python (as of 2020. Can be installed by conda or pip)



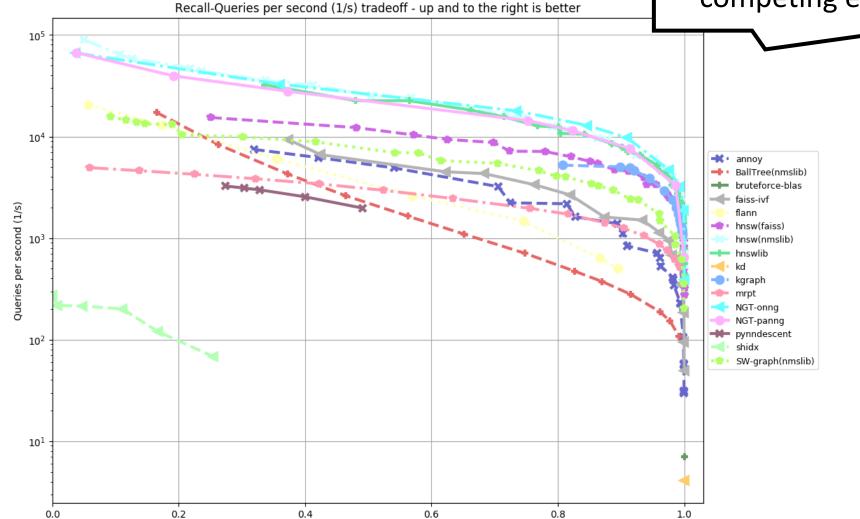
Note: Assuming $D \cong 100$. The size of the problem is determined by DN. If $100 \ll D$, run PCA to reduce D to 100_{08}

Benchmark 1: ann-benchmarks

- https://github.com/erikbern/ann-benchmarks
- Comprehensive and thorough benchmarks for various libraries. Docker-based

> Top right, the better

➤ As of June, 2020, NMSLIB and NGT are competing each other for the first place



Recall

Benchmark 2: annbench

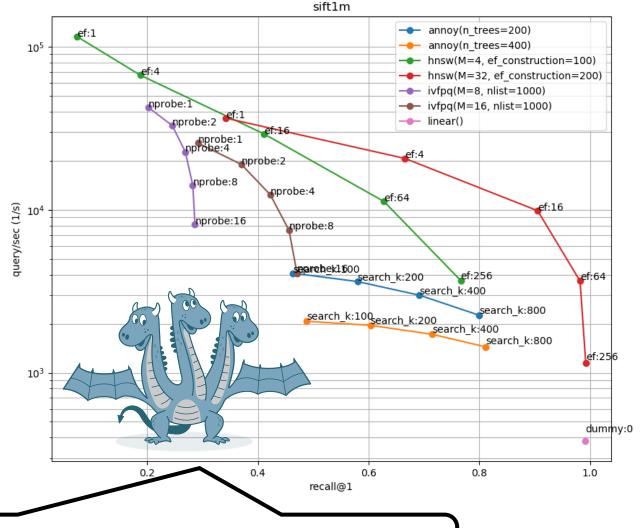
- https://github.com/matsui528/annbench
- Lightweight, easy-to-use

```
# Install libraries
pip install -r requirements.txt

# Download dataset on ./dataset
python download.py dataset=siftsmall

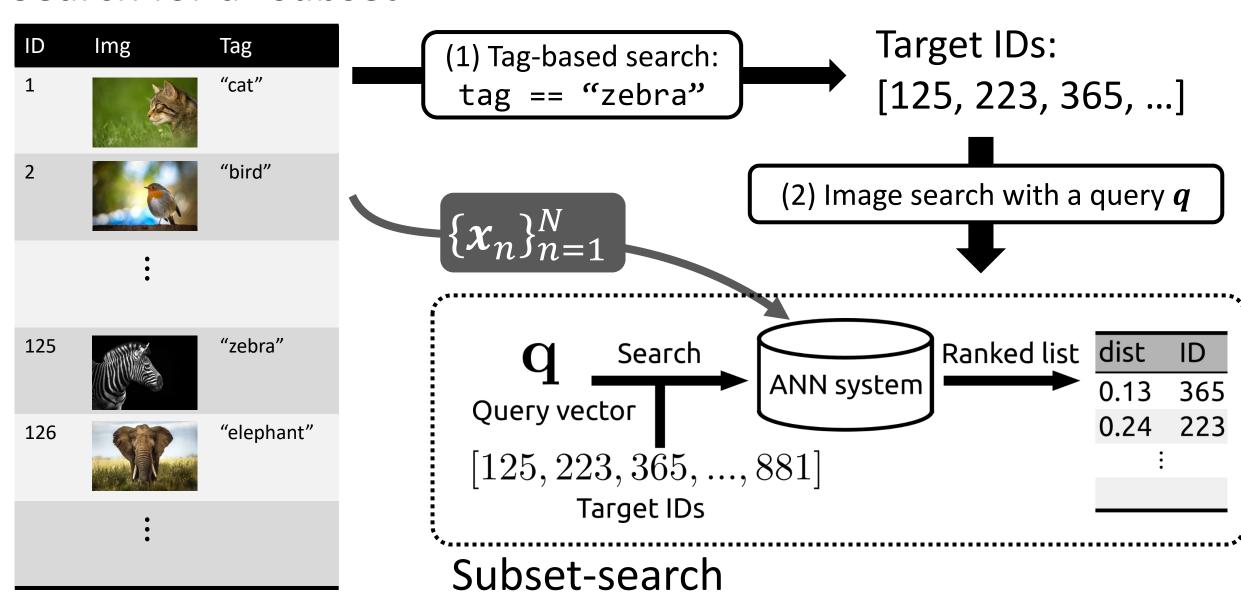
# Evaluate algos. Results are on ./output
python run.py dataset=siftsmall algo=annoy

# Visualize
python plot.py
```



Multi-run by Hydra
python run.py --multirun dataset=siftsmall,sift1m algo=linear,annoy,ivfpq,hnsw

Search for a "subset"



Trillion-scale search: $N = 10^{12}$ (1T)

Sense of scale

- \succ K(= 10^3) Just in a second on a local machine
- \triangleright M(= 10^6) All data can be on memory. Try several approaches
- \triangleright G(= 10⁹) Need to compress data by PQ. Only two datasets are available (SIFT1B, Deep1B)
- ightharpoonup T(= 10^{12}) Cannot even imagine

https://github.com/facebookresearch/faiss/ wiki/Indexing-1T-vectors

- Only in Faiss wiki
- Distributed, mmap, etc.

https://github.com/facebookresearch/faiss/wiki/Indexing-1T-vectors FAISS 1011 1.51

A sparse matrix of 15 Exa elements?

Nearest neighbor search engine: something like ANN + SQL

The algorithm inside is faiss, nmslib, or NGT

Elasticsearch KNN

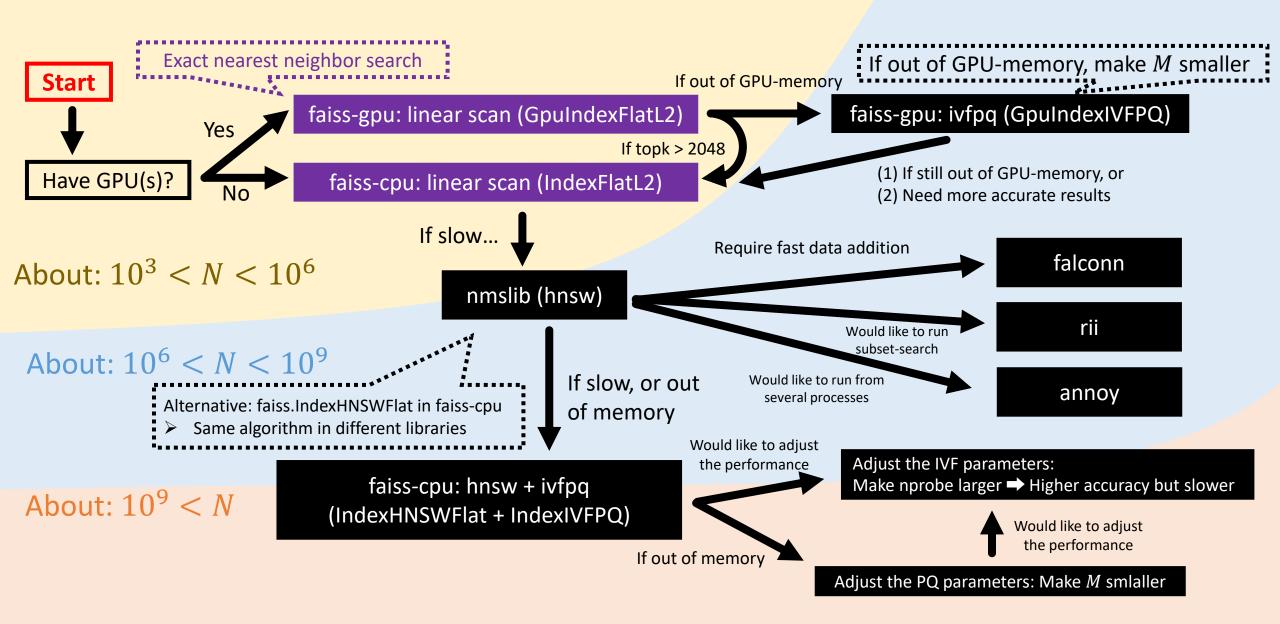
https://github.com/opendistro-for-elasticsearch/k-NN

https://github.com/vdaas/vald

Problems of ANN

- No mathematical background.
 - ✓ Only actual measurements matter: recall and runtime
 - ✓ The ANN problem was mathematically defined 10+ years ago (LSH), but recently no one cares the definition.
- Thus, when the score is high, it's not clear the reason:
 - ✓ The method is good?
 - ✓ The implementation is good?
 - ✓ Just happens to work well for the target dataset?
 - ✓ E.g.: The difference of math library (OpenBLAS vs Intel MKL) matters.
- If one can explain "why this approach works good for this dataset", it would be a great contribution to the field.
- ➤ Not enough dataset. Currently, only two datasets are available for billion-scale data: SIFT1B and Deep1B

cheat-sheet for ANN in Python (as of 2020. Can be installed by conda or pip)



Note: Assuming $D \cong 100$. The size of the problem is determined by DN. If $100 \ll D$, run PCA to reduce D to 100_{15}