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Abstract

Google recently held a competition on the Google-

Landmarks dataset, the largest worldwide dataset of im-

ages for large-scale image retrieval research. We proposed

our own model, which incorporated different modern im-

age retrieval techniques together, and finished in 7th place

in the competition. We present our full image retrieval

model and its results, as well as go over the challenges we

faced in the competition.

1. Introduction

With the explosive growth of multimedia data on the

web, image retrieval is becoming a fundamental problem

in computer vision. The task is straightforward: given a

query image, find the similar images in a a large database.

We competed recently in the Google Landmark Retrieval

Challenge*1, a large-scale image retrieval competition on

a landmarks dataset. Image retrieval is especially impor-

tant for landmark photos, which comprise a large percent-

age of the photographs taken. To tackle this challenge, we

propose an approach that incorporated query expansion

and database augmentation with deep local and global

features. Finally, we utilized regional diffusion to do a

final re-ranking of our results.

2. Dataset

The Google-Landmarks dataset comprises of 1,098,462

index and 117,704 test images, with 15,000 unique land-

marks. The index set was constructed by clustering pho-

tos based on their geolocation and visual similarity. The

task was challenging because of a couple of aspects of the

index dataset. First, the ground-truth labels were not in-

cluded with images in the index, so this made our task

an unsupervised one. Also, both the index and query set

contained many distractors (non-landmark photos), which

ranged from things like paintings to food.
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3. Proposed pipeline

The pipeline of our image retrieval system is illustrated

in Fig. 1. It consists of five key steps: (1) Deep local fea-

ture (DELF) search. (2) Sptatial verification (RANSAC)

on top-100 results of (1). (3) Deep image retrieval (DIR)

search with database-side feature augmentation (DBA).

(4) Query expansion with top-5 results of (3) and the re-

sults of (2) with inlier > 40. (5) Re-ranking by regional

diffusion. In the next sections, we go over the details of

the different components of our pipeline, and also explain

how they tie together.

3.1 Image Representation

We first explain the feature representation of images.

For each gallery image, two kinds of features are extracted.

DELF is an activation from a fully convolutional net-

work with an attention mechanism [6]. For each image,

salient key points are detected. The feature is extracted

as Xn = {x(1)
n ,x

(2)
n , . . .}, where Xn is a set of local fea-

tures for the nth image, and its ith feature is denoted as

x
(i)
n ∈ R40. The coordinate (x, y) of each feature point is

stored as well.

DIR was recently proposed by Gordo et al. [2], and

is the current state-of-the-art global feature of image re-

trieval. Its architecture follows R-MAC [7], which con-

structs a single global feature vector by mean-pooling mul-

tiple sub-region features. Each region feature z
(i)
n is ex-

tracted by max-pooling on convolutional feature map fol-

lowed by normalization steps. All DIR components are

optimized for image retrieval by learning with triplet loss,

and can be trained in an end-to-end manner. Using the

DIR pretrained model provided*2, we extracted features

from multi-scale images following [2].

3.2 DELF search

Given a query image, we first run a k-NN search on

the DELF representations. We decided to use local de-

scriptors so that we could get a small number of accurate

initial results by focusing on local details of the images.

As a part of preprocessing, all DELF features from all

*2 http://www.europe.naverlabs.com/Research/Computer-
Vision/Learning-Visual-Representations/Deep-Image-
Retrieval
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Fig. 1 Our image retrieval pipeline

images are stored in an index structure for fast search.

We employed the state-of-the-art HNSW [5] + IVFPQ [4]

framework with Faiss library*3.

During the search phase, query images also have their

DELF features extracted: Xq = {x(1)
q ,x

(2)
q , . . .}. We

maintain a counter c = [c1, . . . , cN ], where cn measures

the similarity between the query and nth gallery image.

The counter is first initialized by zeros: c ← 0. For each

query feature x
(j)
q , the top-T (approximate) nearest neigh-

bors are retrieved from all gallery features. We denote

these top-T results as a set of tuples {(n1, i1), (n2, i2), ...},
where (nt, it) means that itth feature of ntth gallery image

is tth nearest from x
(j)
q .

These results are aggregated to the final score as follows.

For each (nt, it), the counter is updated as cnt
← cnt

+ 1

iff (1) this (nt, it)-feature has not appeared yet for all Xq,

and (2) features from ntth image have not appeared yet

when we are considering the result of x
(j)
q . The first condi-

tion suppresses unreasonably strong features that match

well with many other features. The second condition al-

leviates the burstiness problem where many similar fea-

tures are extracted from the same image. We performed

this procedure for all query features, and the top-T high-

est values are selected from the counter c. These nearest

images (IDs of the highest entries of c) are used in the

next step.

3.3 Spatial Verification with RANSAC

Spatial verification measures the spatial consistency be-

tween the query image and each of its retrieved results.

RANSAC is one of the most commonly used and robust al-

gorithm to perform such geometric verification. The num-

ber of inliers indicates how many features are matching for

a given query and its retrieved images, and can be con-

sidered a metric for measuring query quality. Since there

exists a large amount of distractors in both the training

and testing set, RANSAC can help to filter out distractors

by filtering out images that have very few matches. Fig-

ure 2 shows some matching examples between query and

database side images using DELF features and RANSAC.

In our model, we found that filtering out images that had

at least 40 matching inliers worked best.

3.4 Global Expansion

Using the search results produced from

*3 https://github.com/facebookresearch/faiss

DELF+RANSAC, we ran global feature-based search to

find additional relevant images. We performed k-nearest

neighbor search on the DIR feature space, using the

DIR descriptors as the global image representation.

However, instead of using the original query/gallery

feature vectors, we employed average query expansion

(AQE) and database-side feature augmentation (DBA)

as enhancements to the original features.

3.4.1 Database-side Feature Augmentation

Database-side feature augmentation (DBA), proposed

by Arandjelović and Zisserman [1], replaces the feature

of every gallery image by a combination of itself and its

neighbors. The objective of DBA is to improve the qual-

ity of image representation by augmenting features using

nearest neighbor images, which is based on the assumption

that the same landmark is appeared in nearest neighbor

images. Specifically, the feature of each gallery image y is

replaced by the weighted average of its k-NN features in

database {y1, ..,yk} as

y′ =
1

k

k∑
r=1

k − r

k
yr, (1)

k−r
k is the weight of rth nearest neighbor feature. Larger

weights are assigned to the features that are close to the

original vector. This simple process significantly improves

the scores without increasing the search cost. In our

model, we applied DBA during the DIR search process,

using the top 10 nearest neighbors of gallery features as

described in [2].

3.4.2 Average Query Expansion

Average query expansion (AQE) is a common form of

query expansion used in image retrieval. The top-k re-

sults from search are taken from the original gallery, and

they are then averaged to form a new feature vector. This

feature vector is then appended to the original query’s fea-

ture vector. In our model, we used AQE twice. 1)We first

use the DELF results filtered by RANSAC in 3.3 as inputs

to AQE for DIR search with DBA. 2) We then select the

top-5 results from 1) and concatenate it with results of

3.3 to form an input for a second AQE that goes through

the k-NN search process with DIR features again.

3.5 Reranking by Regional Diffusion

Diffusion, originally reported in [8], uses the neighbor-

hood graph constructed on the dataset to search each

query on the manifold. It was further developed to han-

dle both global and regional features. Moreover, by us-
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Fig. 2 Pairwise feature correspondences of images in query and database. Blue

lines connect the center of matching DELF local features. In these examples,

RANSAC can correctly match the landmarks despite of varying illumination,

landmark scale, different points of view, etc.

ing scaling up methods such as truncation on the affinity

matrix, we can conduct diffusion on even a large-scale

dataset [3].

We apply diffusion for re-ranking based on regional DIR

features in our task. Firstly, we construct the neighbor-

hood graph for the whole gallery off-line. Each node in

the graph stands for a feature vector of a certain image

in the gallery, while each edge represents the similarity

between a pair of features. Given a query denoted by

Zq = {z(1)n , z
(2)
n , . . .}, a set of regional features, we obtain

a ranking list {Z1, · · · , Zk} containing the top-k retrieved

results that were produced by the aforementioned meth-

ods. Since we only diffuse on the subset of the gallery

that covers the ranking list for reranking, we use just a

small part of the whole neighborhood graph. In particular,

a variant of Laplacian Lα proposed in [3] is constructed

by this truncated neighborhood graph. Similar to query

expansion, we concatenated the regional features of the

original query and top-5 gallery images on the ranking

list to form a new query.

Then we obtained the initial kNN search results for each

feature of the new query over gallery features belonging

to the subset. The scores of initial results are saved into a

vector f0. In the diffusion stage we applied the conjugate

gradient to solve Lαf
∗ = f0, where f∗ will be a vector

composed by the ranking scores after diffusion. Note that

f∗ contains ranking scores on feature level, we need to

aggregate these scores by images. Finally, based on the

ranking scores of the query over the gallery images on the

original ranking list, we obtained a re-ranked list.

3.6 Evaluation

The competition was evaluated according to mean Av-

erage Precision @100 (mAP@100):

mAP@100 =
1

Q

Q∑
q=1

1

min(mq, 100)

min(nq,100)∑
k=1

Pq(k)relq(k) (2)

where:

• Q is the number of query images that depict land-

marks from the index set

• mq is the number of index images containing a land-

mark in common with the query image q (note that

this is only for queries which depict landmarks from

index set, so mq ̸= 0)

• nq is the number of predictions made by the system

for query q

• Pq(k) is the precision at rank k for the q-th query

• relq(k) denotes the relevance of prediction k for the

q-th query (1 if correct, 0 otherwise)

There were several challenges when it came to evalu-

ating our model’s performance. First, the ground truth

image clusters were not included in either the training or

test datasets. This made it difficult to test the perfor-

mance of our model without submitting our final results

to the Kaggle website. In addition, Kaggle has a submis-

sion policy that only allows for up to 5 submissions a day.

These factors made it difficult for us to tune the different

hyperparameters for our model.

To overcome these challenges, we developed our own

system for internal evaluation. In conjunction with the

Landmark Retrieval Challenge, Google also ran the Land-

mark Recognition Challenge. The recognition challenge

had the same test data, but had a different training

dataset with no landmarks in common with the retrieval

challenge. The training data however had a ground truth

label for each image’s respective landmark. To take ad-

vantage of these labels, we selected 10% of the full train-

ing data to use for our internal validation dataset that

was further split into a training and test set. The created

split was stratified so that it contained the same distribu-

tion of landmarks as the full training set. In this setting,

we counted a correct retrieval as an image with the same

landmark label as the query image. Using this, we were

able to solve the aforementioned problems and have an

efficient way to tune our hyperparameters.

4. Results

We performed the evaluation of some state-of-the-art

approaches and combine both local (DELF) and global

(DIR) feature-based methods. Note that there are two

leader boards on Kaggle. The public leader board eval-

uates the scores based on 34% of your submission file to

calculate the mAP score and show it on the public board.
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Fig. 3 We choose three non-distractor query images and show their top results. Images

with red border indicate the selected queries and blue-bordered images are the

corresponding results.

Table. 1 Scoreboard for the internal validation set, the public

set, and the private set. mAP@100 was calculated

for each proposed method.

mAP@100

method internal public private

1. DELF 0.393 0.288 0.292

2. DIR 0.436 0.419 0.396

3. DIR + AQE 0.452 0.502 0.483

4. DIR + DBA + AQE 0.476 0.524 0.512

5. DIR + DBA + DELF + RANSAC + AQE 0.515 0.580 0.545

6. DIR + Diffusion 0.527 0.526 0.523

7. DIR + Diffusion + AQE - 0.531 0.532

8. Fusion of 5 and 7 - 0.586 0.550

9. Diffusion re-ranking of 8 - 0.600 0.561

The private leader board, represents the final scores which

competitors are judged on, and evaluates the scores based

on the held-out 66% at the end of the competition. The

results for the internal, public, and private datasets are

displayed in Table 1. Some results on our internal eval-

uation dataset are missing because of time restrictions.

We observe that commonly used techniques, such as QE

and DBA, provide significant boost to the score. Using a

simple late fusion with max normalization of our proposed

pipeline with DIR + Diffusion + AQE, we were able to in-

crease our mAP to 0.550. A final re-ranking with diffusion

resulted in our best score of 0.561 mAP.

We manually selected some good query images that con-

tain clear landmark and show their top 5 retried results

from our proposed approaches. In figure 3, we observe

that top results are all correctly retrieved from the given

queries.

5. Conclusion

At the end of the competition, we finished 7th place

with a score of 0.561 mAP. This was a significant drop

from the 0.600 mAP score we achieved on the public leader

board. This result could be attributed to some overfit-

ting by our model, but our best submissions on the pub-

lic dataset also ended up being the best on our private

dataset as well. It’s more likely that our model was just

not able to generalize well to the held-out landmarks. In

the future, we should consider creating a stronger inter-

nal evaluation system and potentially test different type

of descriptors to be more resistant to this problem.
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